예제 #1
0
 def test_quantized_input_range_errors(self):
     with self.assertRaises(ValueError):
         # Invalid mode.
         quantize_graph.GraphRewriter(graph_pb2.GraphDef(),
                                      "weights_rounded", [0, 1])
     with self.assertRaises(ValueError):
         # Invalid range.
         quantize_graph.GraphRewriter(graph_pb2.GraphDef(), "eightbit",
                                      [0, -1])
예제 #2
0
    def _RunTestsForQuantizedInputRange(self, float_graph_def, input_map,
                                        output_names, input_range):
        if sys.version_info[0] == 3:
            # uint8->quint8 conversion for numpy is not working currently.
            return

        quantized_input_map = {}
        for k, v in input_map.items():
            arr = [
                int(
                    round((n - input_range[0]) * 255 /
                          (input_range[1] - input_range[0]))) for n in v.flat
            ]
            arr = np.array(arr, np.uint8)
            arr = arr.reshape(v.shape)
            arr = arr.astype(dtypes.quint8.as_numpy_dtype)
            quantized_input_map[k] = arr
        output_tensors = [output_name + ":0" for output_name in output_names]
        float_results = run_graph_def(float_graph_def, input_map,
                                      output_tensors)

        # Quantize treating the input as quantized in range <input_range>.
        rewriter = quantize_graph.GraphRewriter(float_graph_def, "eightbit",
                                                input_range)
        graph_def = rewriter.rewrite(output_names)
        results = run_graph_def(graph_def, quantized_input_map, output_tensors)
        for expected, result in zip(float_results, results):
            assert are_tensors_near(expected, result, .5)
        ops = [node.op for node in graph_def.node]
        self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize"))
        self.assertEqual(len(output_names), ops.count("Dequantize"))

        # Quantize without treating input as quantized.
        rewriter = quantize_graph.GraphRewriter(float_graph_def,
                                                "eightbit",
                                                quantized_input_range=None)
        graph_def = rewriter.rewrite(output_names)
        results = run_graph_def(graph_def, input_map, output_tensors)
        for expected, result in zip(float_results, results):
            assert are_tensors_near(expected, result, .5)
        ops = [node.op for node in graph_def.node]
        self.assertEqual(len(input_map),
                         ops.count("QuantizeV2") + ops.count("Quantize"))
        self.assertEqual(len(output_names), ops.count("Dequantize"))
예제 #3
0
    def test_bias_add_w_fake_quant_w_min_max_vars(self):
        input_node = quantize_graph.create_constant_node(
            "input",
            value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
            dtype=dtypes.float32,
            shape=[1, 1, 2, 5])
        offset_node = quantize_graph.create_constant_node(
            "offset", value=[1, 2, 3, 4, 5], dtype=dtypes.float32, shape=[5])
        bias_add_node = quantize_graph.create_node(
            "BiasAdd", "bias_add", [input_node.name, offset_node.name])
        quantize_graph.set_attr_dtype(bias_add_node, "T", dtypes.float32)

        min_node = quantize_graph.create_constant_node("min_bias_add",
                                                       value=-.5,
                                                       dtype=dtypes.float32,
                                                       shape=[])
        max_node = quantize_graph.create_constant_node("max_bias_add",
                                                       value=15.5,
                                                       dtype=dtypes.float32,
                                                       shape=[])
        fake_quant_node = quantize_graph.create_node(
            "FakeQuantWithMinMaxVars", "fake_quant",
            [bias_add_node.name, min_node.name, max_node.name])

        float_graph_def = graph_pb2.GraphDef()
        float_graph_def.node.extend([
            input_node, offset_node, bias_add_node, min_node, max_node,
            fake_quant_node
        ])
        graph_test(float_graph_def, {}, [fake_quant_node.name], log_graph=True)

        # Verify there is only one Quantize and one Requantize op.
        # Pass in fallback_quantization_range, although it will have no effect
        # because the FakeQuantWithMinMaxVars are used instead.
        eightbit_rewriter = quantize_graph.GraphRewriter(
            float_graph_def,
            "eightbit",
            quantized_input_range=None,
            fallback_quantization_range=[-100, 100])
        eightbit_graph_def = eightbit_rewriter.rewrite([fake_quant_node.name])

        ops = [node.op for node in eightbit_graph_def.node]
        node_names = [node.name for node in eightbit_graph_def.node]
        # No quantize since all inputs are const and can be quantized up-front.
        self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize"))

        # One dequantize at the end.
        self.assertEqual(1, ops.count("Dequantize"))

        # The fallback constants are not in the graph.
        self.assertEqual(0,
                         node_names.count("fallback_quantization_min_value"))
        self.assertEqual(0,
                         node_names.count("fallback_quantization_max_value"))
예제 #4
0
    def test_reshape(self):
        """Tests that MatMul->Reshape->MatMul avoids extra quantize/dequantize."""
        def make_matmul(name, a, b):
            n = quantize_graph.create_node("MatMul", name, [a.name, b.name])
            quantize_graph.set_attr_dtype(n, "T", dtypes.float32)
            quantize_graph.set_attr_bool(n, "transpose_a", False)
            quantize_graph.set_attr_bool(n, "transpose_b", False)
            return n

        # matmul_1 = input*weight_1
        input_node = quantize_graph.create_constant_node("input",
                                                         value=[0, 1, 2, 3],
                                                         dtype=dtypes.float32,
                                                         shape=[4, 1])
        weight_1_node = quantize_graph.create_constant_node(
            "weight_1",
            value=[.5, .6, .7, .8, .9],
            dtype=dtypes.float32,
            shape=[1, 5])
        matmul_1_node = make_matmul("matmul_1", input_node, weight_1_node)

        # Reshape 4x5 to 10x2.
        new_shape_node = quantize_graph.create_constant_node(
            "new_shape_node", value=[10, 2], dtype=dtypes.int32, shape=[2])
        reshape_node = quantize_graph.create_node(
            "Reshape", "reshape", [matmul_1_node.name, new_shape_node.name])
        quantize_graph.set_attr_dtype(reshape_node, "T", dtypes.float32)

        # matmul_2_node = reshape*weight_2
        weight_2_node = quantize_graph.create_constant_node(
            "weight_2", value=[1.5, 2.5], dtype=dtypes.float32, shape=[2, 1])
        matmul_2_node = make_matmul("matmul_2", reshape_node, weight_2_node)

        g = graph_pb2.GraphDef()
        g.node.extend([
            input_node, weight_1_node, matmul_1_node, new_shape_node,
            reshape_node, weight_2_node, matmul_2_node
        ])

        # Test the graph
        graph_test(g, {}, ["matmul_2"])

        # Verify there is only one Quantize and one Requantize op.
        eightbit_rewriter = quantize_graph.GraphRewriter(
            g, "eightbit", quantized_input_range=None)
        eightbit_graph_def = eightbit_rewriter.rewrite(["matmul_2"])

        ops = [node.op for node in eightbit_graph_def.node]
        # No quantize since all inputs are const and can be quantized up-front.
        self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize"))
        self.assertEqual(1, ops.count("QuantizedReshape"))

        # One dequantize at the end.
        self.assertEqual(1, ops.count("Dequantize"))
예제 #5
0
def graph_test(float_graph_def, input_map, output_names, log_graph=False):
    """Runs the float graph through the rewriter and tests the results."""
    float_results = run_graph_def(
        float_graph_def, input_map,
        [output_name + ":0" for output_name in output_names])
    # TODO(petewarden): round test is currently failing because there is no
    # RoundToSteps op available.
    # round_rewriter = quantize_graph.GraphRewriter(float_graph_def, "round")
    # round_graph_def = round_rewriter.rewrite(output_name)
    # round_results = run_graph_def(round_graph_def, input_map,
    #                               [output_name + ":0"])
    # assert are_tensors_near(expected, round_results[0], 1.0)
    #
    # TODO(petewarden): Add test for "quantize" mode.

    eightbit_rewriter = quantize_graph.GraphRewriter(
        float_graph_def, "eightbit", quantized_input_range=None)
    eightbit_graph_def = eightbit_rewriter.rewrite(output_names)
    eightbit_results = run_graph_def(
        eightbit_graph_def, input_map,
        [output_name + ":0" for output_name in output_names])
    for expected, result in zip(float_results, eightbit_results):
        assert are_tensors_near(expected, result, 1.0)

    if log_graph:
        tf_logging.info("8bit:\n%s", str(eightbit_graph_def))

    # Test the weights_rounded mode. This uses the default bit_depth.
    weights_rounded_rewriter = quantize_graph.GraphRewriter(
        float_graph_def, "weights_rounded", quantized_input_range=None)
    weights_rounded_graph_def = weights_rounded_rewriter.rewrite(output_names)
    weights_rounded_results = run_graph_def(
        weights_rounded_graph_def, input_map,
        [output_name + ":0" for output_name in output_names])
    for expected, result in zip(float_results, weights_rounded_results):
        assert are_tensors_near(expected, result, 1.0)
예제 #6
0
    def test_bias_add_w_fallback_min_max_vars(self):
        input_node = quantize_graph.create_constant_node(
            "input",
            value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
            dtype=dtypes.float32,
            shape=[1, 1, 2, 5])
        offset_node = quantize_graph.create_constant_node(
            "offset", value=[1, 2, 3, 4, 5], dtype=dtypes.float32, shape=[5])
        bias_add_node = quantize_graph.create_node(
            "BiasAdd", "bias_add", [input_node.name, offset_node.name])
        quantize_graph.set_attr_dtype(bias_add_node, "T", dtypes.float32)

        float_graph_def = graph_pb2.GraphDef()
        float_graph_def.node.extend([input_node, offset_node, bias_add_node])
        graph_test(float_graph_def, {}, [bias_add_node.name], log_graph=True)

        # Verify there is only one Quantize, one Requantize op, and no
        # RequantizationRange op.
        eightbit_rewriter = quantize_graph.GraphRewriter(
            float_graph_def,
            "eightbit",
            quantized_input_range=None,
            fallback_quantization_range=[-.5, 15.5])
        eightbit_graph_def = eightbit_rewriter.rewrite([bias_add_node.name])

        ops = [node.op for node in eightbit_graph_def.node]
        node_names = [node.name for node in eightbit_graph_def.node]
        # No quantize since all inputs are const and can be quantized up-front.
        self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize"))

        # One dequantize at the end.
        self.assertEqual(1, ops.count("Dequantize"))

        # No RequantizationRange
        self.assertEqual(0, ops.count("RequantizationRange"))

        # The fallback constants are in the graph.
        self.assertEqual(1,
                         node_names.count("fallback_quantization_min_value"))
        self.assertEqual(1,
                         node_names.count("fallback_quantization_max_value"))
예제 #7
0
    def test_relu_w_fake_quant_w_min_max_vars(self):
        input_node = quantize_graph.create_constant_node(
            "input",
            value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
            dtype=dtypes.float32,
            shape=[1, 2, 6, 1])
        relu_node = quantize_graph.create_node("Relu", "relu",
                                               [input_node.name])
        quantize_graph.set_attr_dtype(relu_node, "T", dtypes.float32)

        min_node = quantize_graph.create_constant_node("min_bias_add",
                                                       value=0,
                                                       dtype=dtypes.float32,
                                                       shape=[])
        max_node = quantize_graph.create_constant_node("max_bias_add",
                                                       value=12,
                                                       dtype=dtypes.float32,
                                                       shape=[])
        fake_quant_node = quantize_graph.create_node(
            "FakeQuantWithMinMaxVars", "fake_quant",
            [relu_node.name, min_node.name, max_node.name])

        float_graph_def = graph_pb2.GraphDef()
        float_graph_def.node.extend(
            [input_node, relu_node, min_node, max_node, fake_quant_node])
        graph_test(float_graph_def, {}, [fake_quant_node.name], log_graph=True)

        # Verify there is only one Quantize and one Requantize op.
        eightbit_rewriter = quantize_graph.GraphRewriter(
            float_graph_def, "eightbit", quantized_input_range=None)
        eightbit_graph_def = eightbit_rewriter.rewrite([fake_quant_node.name])

        ops = [node.op for node in eightbit_graph_def.node]
        # No quantize since all inputs are const and can be quantized up-front.
        self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize"))

        # One dequantize at the end.
        self.assertEqual(1, ops.count("Dequantize"))
예제 #8
0
    def test_concat(self):
        shape_constant_name = "shape_constant"
        a_constant_name = "a_constant"
        b_constant_name = "b_constant"
        concat_name = "concat"

        float_graph_def = graph_pb2.GraphDef()
        shape_constant = quantize_graph.create_constant_node(
            shape_constant_name, value=0, dtype=dtypes.int32, shape=[])
        float_graph_def.node.extend([shape_constant])
        a_constant = quantize_graph.create_constant_node(
            a_constant_name,
            value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
            dtype=dtypes.float32,
            shape=[2, 2, 3])
        float_graph_def.node.extend([a_constant])
        b_constant = quantize_graph.create_constant_node(
            b_constant_name,
            value=[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24],
            dtype=dtypes.float32,
            shape=[2, 2, 3])
        float_graph_def.node.extend([b_constant])
        concat_node = quantize_graph.create_node(
            "Concat", concat_name,
            [shape_constant_name, a_constant_name, b_constant_name])
        quantize_graph.set_attr_int(concat_node, "N", 2)
        quantize_graph.set_attr_dtype(concat_node, "T", dtypes.float32)
        float_graph_def.node.extend([concat_node])

        graph_test(float_graph_def, {}, [concat_name])

        # Verify the concat is quantized.
        eightbit_rewriter = quantize_graph.GraphRewriter(
            float_graph_def, "eightbit", quantized_input_range=None)
        eightbit_graph_def = eightbit_rewriter.rewrite([concat_name])

        ops = [node.op for node in eightbit_graph_def.node]
        self.assertEqual(1, ops.count("QuantizedConcat"))
예제 #9
0
    def test_remove_redundant_quantization(self):
        a_constant_name = "a_constant"
        a_constant_min_name = "a_constant_min"
        a_constant_max_name = "a_constant_max"
        a_dequantize_name = "a_dequantize"
        a_quantize_name = "a_quantize"
        b_constant_name = "b_constant"
        b_constant_min_name = "b_constant_min"
        b_constant_max_name = "b_constant_max"
        b_dequantize_name = "b_dequantize"
        b_quantize_name = "b_quantize"
        mat_mul_name = "mat_mul"
        graph_def = graph_pb2.GraphDef()
        a_constant = quantize_graph.create_constant_node(a_constant_name,
                                                         value=(0, ),
                                                         dtype=dtypes.quint8,
                                                         shape=[])
        graph_def.node.extend([a_constant])
        a_constant_min = quantize_graph.create_constant_node(
            a_constant_min_name, value=2, dtype=dtypes.float32, shape=[])
        graph_def.node.extend([a_constant_min])
        a_constant_max = quantize_graph.create_constant_node(
            a_constant_max_name, value=2, dtype=dtypes.float32, shape=[])
        graph_def.node.extend([a_constant_max])
        a_dequantize_node = quantize_graph.create_node(
            "Dequantize", a_dequantize_name,
            [a_constant_name, a_constant_min_name, a_constant_max_name])
        quantize_graph.set_attr_dtype(a_dequantize_node, "T", dtypes.uint8)
        graph_def.node.extend([a_dequantize_node])
        a_quantize_node = quantize_graph.create_node(
            "QuantizeV2", a_quantize_name, [
                a_dequantize_name, a_dequantize_name + ":1",
                a_dequantize_name + ":2"
            ])
        quantize_graph.set_attr_dtype(a_quantize_node, "T", dtypes.uint8)
        graph_def.node.extend([a_quantize_node])
        b_constant = quantize_graph.create_constant_node(b_constant_name,
                                                         value=(0, ),
                                                         dtype=dtypes.quint8,
                                                         shape=[])
        graph_def.node.extend([b_constant])
        b_constant_min = quantize_graph.create_constant_node(
            b_constant_min_name, value=3, dtype=dtypes.float32, shape=[])
        graph_def.node.extend([b_constant_min])
        b_constant_max = quantize_graph.create_constant_node(
            b_constant_max_name, value=3, dtype=dtypes.float32, shape=[])
        graph_def.node.extend([b_constant_max])
        b_dequantize_node = quantize_graph.create_node(
            "Dequantize", b_dequantize_name,
            [b_constant_name, b_constant_min_name, b_constant_max_name])
        quantize_graph.set_attr_dtype(b_dequantize_node, "T", dtypes.uint8)
        graph_def.node.extend([b_dequantize_node])
        b_quantize_node = quantize_graph.create_node(
            "QuantizeV2", b_quantize_name, [
                b_dequantize_name, b_dequantize_name + ":1",
                b_dequantize_name + ":2"
            ])
        quantize_graph.set_attr_dtype(b_quantize_node, "T", dtypes.uint8)
        graph_def.node.extend([b_quantize_node])
        mat_mul_node = quantize_graph.create_node(
            "QuantizedMatMul", mat_mul_name, [
                a_quantize_name, b_quantize_name, a_quantize_name + ":1",
                a_quantize_name + ":2", b_quantize_name + ":1",
                b_quantize_name + ":2"
            ])
        quantize_graph.set_attr_dtype(mat_mul_node, "T1", dtypes.uint8)
        quantize_graph.set_attr_dtype(mat_mul_node, "T2", dtypes.int32)
        graph_def.node.extend([mat_mul_node])

        expected_output = graph_pb2.GraphDef()
        a_constant = quantize_graph.create_constant_node(a_constant_name,
                                                         value=(0, ),
                                                         dtype=dtypes.quint8,
                                                         shape=[])
        expected_output.node.extend([a_constant])
        a_constant_min = quantize_graph.create_constant_node(
            a_constant_min_name, value=2, dtype=dtypes.float32, shape=[])
        expected_output.node.extend([a_constant_min])
        a_constant_max = quantize_graph.create_constant_node(
            a_constant_max_name, value=2, dtype=dtypes.float32, shape=[])
        expected_output.node.extend([a_constant_max])
        b_constant = quantize_graph.create_constant_node(b_constant_name,
                                                         value=(0, ),
                                                         dtype=dtypes.quint8,
                                                         shape=[])
        expected_output.node.extend([b_constant])
        b_constant_min = quantize_graph.create_constant_node(
            b_constant_min_name, value=3, dtype=dtypes.float32, shape=[])
        expected_output.node.extend([b_constant_min])
        b_constant_max = quantize_graph.create_constant_node(
            b_constant_max_name, value=3, dtype=dtypes.float32, shape=[])
        expected_output.node.extend([b_constant_max])
        mat_mul_node = quantize_graph.create_node(
            "QuantizedMatMul", mat_mul_name, [
                a_constant_name, b_constant_name, a_constant_min_name,
                a_constant_max_name, b_constant_min_name, b_constant_max_name
            ])
        quantize_graph.set_attr_dtype(mat_mul_node, "T1", dtypes.uint8)
        quantize_graph.set_attr_dtype(mat_mul_node, "T2", dtypes.int32)
        expected_output.node.extend([mat_mul_node])
        expected_output.versions.CopyFrom(graph_def.versions)
        expected_output.library.CopyFrom(graph_def.library)

        rewriter = quantize_graph.GraphRewriter(graph_def, [mat_mul_name],
                                                quantized_input_range=None)
        output = rewriter.remove_redundant_quantization(graph_def)
        stripped_output = graph_util.extract_sub_graph(output, [mat_mul_name])
        self.assertProtoEquals(expected_output, stripped_output)