initialMatrix += spinMatrix[m][row] * tensor(matrixMap[m[0]],
                                                     matrixMap[m[1]])

    initialMatrix /= 4.
    #	initialMatrix = renderMatrixPhysical(initialMatrix)

    import scipy.optimize

    #	result = scipy.optimize.fmin(probability,parametrizeMatrix(initialMatrix),args = (spinMatrix,row),maxiter = 1000,maxfun = 100000)

    #	resultMatrix = generateDensityMatrix(result)
    resultMatrix = initialMatrix

    for a in range(0, 4):
        for b in range(0, 4):
            datacube.set(**{str(a) + str(b): resultMatrix[a, b]})

    datacube.commit()

    print trace(resultMatrix), eigh(resultMatrix)[0]

    fig = figure(1)
    fig.set_size_inches((4, 4))
    clf()
    plotDensityMatricesContour([resultMatrix, initialMatrix],
                               style="ellipse",
                               annotate=False,
                               labels=["00", "01", "10", "11"])
    show()

datacube.savetxt()
	
		import scipy.optimize
		
		result = scipy.optimize.fmin(probability,parametrizeMatrix(initialMatrix),args = (spinMatrix,row),maxiter = 1000,maxfun = 100000)
	
		resultMatrix = generateDensityMatrix(result)
		
		toDatacube(resultMatrix,densityMatrices)
		densityMatrices.commit()
		
		print i
	
		fig=figure(1)
		fig.set_size_inches((4,4))
		clf()
		plotDensityMatricesContour([resultMatrix,initialMatrix],style="rectangle",annotate = True,labels=["00","01","10","11"])
		show()
	densityMatrices.savetxt()
else:
	densityMatrices.loadtxt("grover - maximum likelihood density matrices-2")
	
##Simulate the Grover search algorithm

swap = matrix([[1,0,0,0],[0,0,-1j,0],[0,-1j,0,0],[0,0,0,1]])

step1 = tensor(roty(math.pi/2),roty(math.pi/2))

step2 = swap

step3 = lambda a,b:tensor(rotz(a*math.pi/2),rotz(b*math.pi/2))
              y=1.5,
              dx=0.8,
              dy=0,
              zorder=10,
              width=2,
              fc=(0.7, 0.7, 0.7),
              lw=0)
    a.set_clip_on(False)
    ax.add_artist(a)

    figure(11, figsize=(4, 4))
    clf()
    plotDensityMatricesContour(
        [densityMatrix, initialStates[int(i / 2) + offset]],
        style="ellipse",
        annotate=False,
        labels=["00", "01", "10", "11"],
        colors=["red", "black"],
        showOutline=[False, True])
    savefig("input_matrices_%i.pdf" % ((i + offset * 2) / 2))
    clf()
    plotDensityMatricesContour(
        [densityMatrix, outputStates[int(i / 2) + offset]],
        style="ellipse",
        annotate=False,
        labels=["00", "01", "10", "11"],
        colors=["red", "black"],
        showOutline=[False, True])
    savefig("output_matrices_%i.pdf" % ((i + offset * 2) / 2))
    figure(10)
	print eigh(initialMatrix)[0]

	print "Parameters:",parametrizeMatrix(initialMatrix)

	reconstructedMatrix = generateDensityMatrix(parametrizeMatrix(initialMatrix))
	
	if not allclose(initialMatrix,reconstructedMatrix):
		print "Error parametrizing initial matrix!"

	import scipy.optimize
	
	result = scipy.optimize.fmin(probability,parametrizeMatrix(initialMatrix),args = (spinMatrix,row),maxiter = 1000,maxfun = 100000)

	resultMatrix = generateDensityMatrix(result)
	
	for a in range(0,4):
		for b in range(0,4):
			datacube.set(**{str(a)+str(b):resultMatrix[a,b]})
	
	datacube.commit()
	
	print trace(resultMatrix),eigh(resultMatrix)[0]

	fig=figure(1)
	fig.set_size_inches((4,4))
	clf()
	plotDensityMatricesContour([resultMatrix,initialMatrix],style="ellipse",annotate = False,labels=["00","01","10","11"])
	show()

datacube.savetxt()
                         (0.03683472221169762 + 0.005920236771060207j),
                         (-0.035290388800884955 - 0.013034753743398401j),
                         (0.3696456445542211 + 0j)]])

matrices = [(phiPlusMatrix, phiPlusMatrixIdeal),
            (phiMinusMatrix, phiMinusMatrixIdeal),
            (psiPlusMatrix, psiPlusMatrixIdeal),
            (psiMinusMatrix, psiMinusMatrixIdeal)]
fig = figure(1)
fig.set_size_inches((8, 3))
clf()

i = 1
for matrixPair in matrices:
    subplot(1, 4, i)
    if i == 1:
        annotate = True
    else:
        annotate = False
    plotDensityMatricesContour([matrixPair[0], matrixPair[1]],
                               style="ellipse",
                               annotate=annotate,
                               labels=["00", "01", "10", "11"],
                               colors=["red", "black"],
                               showOutline=[False, True])
    title("$F_{tr}$ = %.2g %%" %
          (traceFidelity(matrixPair[0], matrixPair[1]) * 100))
    show()
    i += 1
savefig("bell matrices.pdf")
예제 #6
0
        print "Error parametrizing initial matrix!"

    import scipy.optimize

    result = scipy.optimize.fmin(probability,
                                 parametrizeMatrix(initialMatrix),
                                 args=(spinMatrix, row),
                                 maxiter=1000,
                                 maxfun=100000)

    resultMatrix = generateDensityMatrix(result)

    for a in range(0, 4):
        for b in range(0, 4):
            densityMatrices.set(**{str(a) + str(b): resultMatrix[a, b]})

    densityMatrices.commit()

    print trace(resultMatrix), eigh(resultMatrix)[0]

    fig = figure(1)
    fig.set_size_inches((4, 4))
    clf()
    plotDensityMatricesContour([resultMatrix],
                               showOutline=[False],
                               annotate=False,
                               labels=[])
    savefig("matrices/matrix_%d.pdf" % (i + 1))
    show()

densityMatrices.savetxt()
	print eigh(initialMatrix)[0]

	print "Parameters:",parametrizeMatrix(initialMatrix)

	reconstructedMatrix = generateDensityMatrix(parametrizeMatrix(initialMatrix))
	
	if not allclose(initialMatrix,reconstructedMatrix):
		print "Error parametrizing initial matrix!"

	import scipy.optimize
	
	result = scipy.optimize.fmin(probability,parametrizeMatrix(initialMatrix),args = (spinMatrix,row),maxiter = 1000,maxfun = 100000)

	resultMatrix = generateDensityMatrix(result)
	
	for a in range(0,4):
		for b in range(0,4):
			densityMatrices.set(**{str(a)+str(b):resultMatrix[a,b]})
	
	densityMatrices.commit()
	
	print trace(resultMatrix),eigh(resultMatrix)[0]

	fig=figure(1)
	fig.set_size_inches((4,4))
	clf()
	plotDensityMatricesContour([resultMatrix],showOutline = [False],annotate = False,labels=["00","01","10","11"])
        savefig("matrices/matrix_%d.pdf" % i)
	show()

spinMatrix.savetxt()
예제 #8
0
                                     args=(spinMatrix, row),
                                     maxiter=1000,
                                     maxfun=100000)

        resultMatrix = generateDensityMatrix(result)

        toDatacube(resultMatrix, densityMatrices)
        densityMatrices.commit()

        print i

        fig = figure(1)
        fig.set_size_inches((4, 4))
        clf()
        plotDensityMatricesContour([resultMatrix, initialMatrix],
                                   style="rectangle",
                                   annotate=True,
                                   labels=["00", "01", "10", "11"])
        show()
    densityMatrices.savetxt()
else:
    densityMatrices.loadtxt("grover - maximum likelihood density matrices-2")

##Simulate the Grover search algorithm

swap = matrix([[1, 0, 0, 0], [0, 0, -1j, 0], [0, -1j, 0, 0], [0, 0, 0, 1]])

step1 = tensor(roty(math.pi / 2), roty(math.pi / 2))

step2 = swap

step3 = lambda a, b: tensor(rotz(a * math.pi / 2), rotz(b * math.pi / 2))
예제 #9
0
		for j in range(0,d):
			densityMatrix[i,j] = cube[str(i)+str(j)][row]
	return densityMatrix


detector1 = matrix([[0.9515,1-0.8843],[1-0.9515,0.8843]])
detector2 = matrix([[0.9563,1-0.8737],[1-0.9563,0.8737]])
detector = tensor(detector1,detector2)

detectorReal = matrix(groverSingleRunData.parameters()["qubit1"]["detectorFunction"])

import matplotlib.gridspec as gridspec

figure(12)
clf()
plotDensityMatricesContour([detector,detectorReal],style="rectangle",annotate = annotate,labels=["00","01","10","11"])
show()

fig = figure(10)
subplot(441)
rc('font',size = 12)
rc('axes', edgecolor=(0.5,0.5,0.5),facecolor = 'white')

fig.set_size_inches((12,3))
gs = gridspec.GridSpec(1, 4)

for state in range(0,4):
	densityMatrix = fromDatacube(densityMatrices,4+5*state)
        print densityMatrix
	measuredProbs = map(lambda i:float(groverSingleRunData.children()[state]["zzp"+i][0]),["00","01","10","11"])
	probs = matrix(map(lambda i:float(densityMatrix[i,i]),range(0,4)))
	densityMatrix = fromDatacube(densityMatrices,i+offset*2,order = order)

	labels = []
	if int(i/4) == 0 and i % 4 == 0:
		labels = ["00","01","10","11"]

	annotate = False
	

	a = Arrow(x = 3.7,y = 1.5,dx = 0.8,dy = 0,zorder = 10,width = 2,fc = (0.7,0.7,0.7),lw = 0)
	a.set_clip_on(False)
	ax.add_artist(a)
	
	figure(11,figsize = (4,4))
	clf()
	plotDensityMatricesContour([densityMatrix,initialStates[int(i/2)+offset]],style="ellipse",annotate = False,labels=["00","01","10","11"],colors = ["red","black"],showOutline = [False,True])
	savefig("input_matrices_%i.pdf" % ((i+offset*2)/2))
	clf()
	plotDensityMatricesContour([densityMatrix,outputStates[int(i/2)+offset]],style="ellipse",annotate = False,labels=["00","01","10","11"],colors = ["red","black"],showOutline = [False,True])
	savefig("output_matrices_%i.pdf" % ((i+offset*2)/2))
	figure(10)

	plotDensityMatricesContour([densityMatrix,initialStates[int(i/2)+offset]],style="ellipse",annotate = False,labels=labels,colors = ["red","black"],showOutline = [False,True])
	fidelity = traceFidelity(densityMatrix,initialStates[int(i/2)+offset])
	title("$F_{tr}$ = %.2g %%" % (fidelity*100))

	xlabel("$%s$" % initialStatesLabels[int(i/2)+offset])

	ax = subplot(gs[int(i/4),(i) % 4+1])
	densityMatrix = fromDatacube(densityMatrices,i+1+offset*2)
from cmath import *

for i in range(1,4):
	for j in range(0,i):
		for m in [phiMinusMatrix,phiPlusMatrix]:
			m[j,i] = m[i,j].conjugate()

psiMinusMatrix = matrix([[(0.46897871228514415+0j), (0.0787538679534797+0j), (-0.01674925247855+0.00172926959478613j), (-0.4297743574491255-0.020974501340607927j)], [(0.0787538679534797+0j), (0.013224847002998141+0j), (0.03992324135304936+0j), (0.04211084712077284+0.016900339646178042j)], [(-0.01674925247855-0.00172926959478613j), (0.03992324135304936+0j), (0.12052050203473001+0j), (0.051750707321192996-0.0020741618904280444j)], [(-0.4297743574491255+0.020974501340607927j), (0.04211084712077284-0.016900339646178042j), (0.051750707321192996+0.0020741618904280444j), (0.39727593867712774+0j)]])

psiPlusMatrix = matrix([[(0.47356299048313577+0j), (0.04603334696364297+0j), (-0.04479988764319459-0.009609979426587522j), (0.40492025330865916+0.07908492432292454j)], [(0.04603334696364297+0j), (0.004474735305039848+0j), (0.026107022049126117+0j), (0.03683472221169762-0.005920236771060207j)], [(-0.04479988764319459+0.009609979426587522j), (0.026107022049126117+0j), (0.15231662965760334+0j), (-0.035290388800884955+0.013034753743398401j)], [(0.40492025330865916-0.07908492432292454j), (0.03683472221169762+0.005920236771060207j), (-0.035290388800884955-0.013034753743398401j), (0.3696456445542211+0j)]])

matrices = [(phiPlusMatrix,phiPlusMatrixIdeal),(phiMinusMatrix,phiMinusMatrixIdeal),(psiPlusMatrix,psiPlusMatrixIdeal),(psiMinusMatrix,psiMinusMatrixIdeal)]
fig=figure(1)
fig.set_size_inches((8,3))
clf()

i = 1
for matrixPair in matrices:
	subplot(1,4,i)
	if i == 1:
		annotate = True
	else:
		annotate = False
	plotDensityMatricesContour([matrixPair[0],matrixPair[1]],style="ellipse",annotate = annotate,labels=["00","01","10","11"],colors = ["red","black"],showOutline = [False,True])
	title("$F_{tr}$ = %.2g %%" % (traceFidelity(matrixPair[0],matrixPair[1])*100))
	show()
	i+=1
savefig("bell matrices.pdf")