def update_pagerank(): print('Query for uris') uri_response = query.query_sparql(uri_query) print('Query for uris complete') adjacency_list = populate_uris(uri_response) print('Query for links') link_response = query.query_sparql(link_query) print('Query for links complete') populate_links(link_response, adjacency_list) g = graph(adjacency_list) print('Running pagerank') pr = pagerank(g, tolerance=float(utils.get_config()['pagerank_tolerance'])) print('Running pagerank complete') pr_vector = np.squeeze(np.asarray(pr)) return make_uri2rank(pr_vector, g.uri2index)
def update_clusters(): print('Query for sequences') sequences_response = query.query_sparql(sequence_query) print('Query for sequences complete') write_fasta(sequences_response) print('Running uclust') run_uclust() print('Running uclust complete') analyze_uclust() return uclust2clusters()
def update_pagerank(): utils.log('Query for uris') uri_response = query.query_sparql(uri_query) utils.log('Query for uris complete') adjacency_list = populate_uris(uri_response) utils.log('Query for links') link_response = query.query_sparql(link_query) utils.log('Query for links complete') populate_links(link_response, adjacency_list) g = graph(adjacency_list) utils.log('Running pagerank') pr = pagerank(g, tolerance=float(utils.get_config()['pagerank_tolerance'])) utils.log('Running pagerank complete') pr_vector = np.squeeze(np.asarray(pr)) # after squeeze, make sure it at least has a dimension in the case that there is only one element if pr_vector.shape == (): pr_vector = np.array([pr_vector]) return make_uri2rank(pr_vector, g.uri2index)
def incremental_remove_collection(subject, uri_prefix): collection_membership_query = ''' SELECT ?s WHERE { <''' + subject + '''> sbol2:member ?s . FILTER(STRSTARTS(str(?s),''' + "'" + uri_prefix + "'" + ''')) } ''' members = query.query_sparql(collection_membership_query) delete_subject(subject) for member in members: delete_subject(member['s'])