jstr_insert += '],"infomation_gain":[' for idx, line in enumerate(IT_score): # IT if idx < num_to_show: jstr_insert += '"' + line.rstrip() + '",' jstr_insert = jstr_insert[:len(jstr_insert) - 1] # remove last ',' jstr_insert += '],"combined":[' for idx, line in enumerate(combined_score): # Combined if idx < num_to_show: jstr_insert += '"' + line.rstrip() + '",' jstr_insert = jstr_insert[:len(jstr_insert) - 1] # remove last ',' jstr_insert += ']}}' jstr_insert = jstr_insert.replace("\t", ",") #print "jstr_insert=",jstr_insert ## write to mongoDB.myml.dataset_info, ignore doc with duplicated key ret = query_mongo.upsert_doc_t(mongo_tuples, filter, jstr_insert, upsert_flag) print "INFO: Upsert count for feature importance=", ret print 'INFO: Finished!' return 0 # combint to one table def combine_with_coef(row_id_str, coef_arr, FIRM_list, IT_list, Prob_list, out_filename, feat_sample_count_arr): #print "INFO: combined fname=",out_filename if os.path.exists(out_filename): try: os.remove(out_filename) except OSError, e: print("ERROR: %s - %s." % (e.out_filename, e.strerror))
def train(row_id_str, ds_id, hdfs_feat_dir, local_out_dir, ml_opts_jstr, excluded_feat_cslist , sp_master, spark_rdd_compress, spark_driver_maxResultSize, sp_exe_memory, sp_core_max , zipout_dir, zipcode_dir, zip_file_name , mongo_tuples, labelnameflag, fromweb , training_fraction, jobname, model_data_folder ): # zip func in other files for Spark workers ================= ================ zip_file_path = ml_build_zip_file(zipout_dir, zipcode_dir, zip_file_name, prefix='zip_feature_util') print "INFO: zip_file_path=",zip_file_path # ML model filename ==== model_fname=os.path.join(model_data_folder, row_id_str+'.pkl') print "INFO: model_data_folder=",model_data_folder # create out folders and clean up old model files ==== ml_util.ml_prepare_output_dirs(row_id_str,local_out_dir,model_data_folder,model_fname) # init Spark context ==== sc=ml_util.ml_get_spark_context(sp_master , spark_rdd_compress , spark_driver_maxResultSize , sp_exe_memory , sp_core_max , jobname , [zip_file_path]) t0 = time() t00 = t0 # check if ml_opts.has_excluded_feat ==1 =================================== has_excluded_feat=0 if not ml_opts_jstr is None: ml_opts=json.loads(ml_opts_jstr) if "has_excluded_feat" in ml_opts: has_excluded_feat=ml_opts["has_excluded_feat"] # get excluded feature list from mongo ========== === if str(has_excluded_feat) == "1" and excluded_feat_cslist is None: excluded_feat_cslist=ml_util.ml_get_excluded_feat(row_id_str, mongo_tuples) print "INFO: excluded_feat_cslist=",excluded_feat_cslist # source libsvm filename libsvm_data_file = os.path.join(hdfs_feat_dir , "libsvm_data") print "INFO: libsvm_data_file=", libsvm_data_file # load feature count file feat_count_file=libsvm_data_file+"_feat_count" feature_count=zip_feature_util.get_feature_count(sc,feat_count_file) print "INFO: feature_count=",feature_count # load sample RDD from text file # also exclude selected features in sample ================ ===== # format (LabeledPoint,hash) from str2LabeledPoint_hash() #samples_rdd = MLUtils.loadLibSVMFile(sc, libsvm_data_file) samples_rdd,feature_count = zip_feature_util.get_sample_rdd(sc, libsvm_data_file, feature_count, excluded_feat_cslist) all_data = samples_rdd.collect() sample_count=len(all_data) # 2-D array features_list = [x.features.toArray() for x,_ in all_data] # label array labels_list_all = [x.label for x,_ in all_data] # hash array hash_list_all = [x for _,x in all_data] # convert to np array labels_list_all = array(labels_list_all) features_array = np.array(features_list) hash_list_all=np.array(hash_list_all) # generate sparse matrix (csr) for all samples features_sparse_mtx = csr_matrix(features_array) ### randomly split the samples into training and testing data =============== X_train_sparse, X_test_sparse, labels_train, labels_test, train_hash_list, test_hash_list = \ cross_validation.train_test_split(features_sparse_mtx, labels_list_all, hash_list_all, test_size=(1-training_fraction) ) # X_test_sparse is scipy.sparse.csr.csr_matrix testing_sample_count = len(labels_test) training_sample_count=len(labels_train) training_lbl_cnt_list=Counter(labels_train) testing_lbl_cnt_list=Counter(labels_test) print "INFO: training sample count=",training_sample_count,", testing sample count=",testing_sample_count,",sample_count=",sample_count print "INFO: training label list=",training_lbl_cnt_list,", testing label list=",testing_lbl_cnt_list print "INFO: train_hash_list count=",len(train_hash_list),", test_hash_list count=",len(test_hash_list) t1 = time() print 'INFO: running time: %f' %(t1-t0) ############################################### ###########build learning model################ ############################################### ### parse parameters and generate the model ### (clf, model_name, api, cv, param_dic) = parse_param_and_get_model(ml_opts) if model_name == "none": print "ERROR: model name not found!" return -1 #param_jobj=json.loads(ml_opts_jstr); #print "param_jobj=",param_jobj ######################################################## ##########Grid Search with cross validation############# ######################################################## json2save={} json2save["rid"]=int(row_id_str) json2save["key"]="cv_result" #json2save["param_str"]=ml_opts_jstr json2save["param_dic"]=param_dic cv_grid=[] if api == "centralized": #########run with Scikit-learn API (for comparison)###### print "INFO: ******************Grid Search with Scikit-learn API************" t0 = time() # Set the parameters by cross-validation #tuned_parameters = [{'C': [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000]}] #tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], \ # 'C': [1, 10, 100, 1000]}, \ # {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}] scores = ['accuracy'] json2save["scores"]=scores #print json2save for score in scores: # for one item only? score=accuracy print("INFO: # Tuning hyper-parameters for %s" % score) #print() grid = grid_search.GridSearchCV(estimator = clf, param_grid = param_dic, cv=cv, scoring= score) grid.fit(X_train_sparse, labels_train) print "INFO: Best parameters set found on development set:" print "INFO: grid.best_params_=",grid.best_params_ print "INFO: Grid scores on development set:" for key in grid.best_params_: print "INFO: best_params["+key+"]=", grid.best_params_[key] if key.lower()=="regtype": ml_opts['regularization']=str(grid.best_params_[key]) # add best param to else: ml_opts[key.lower()]=str(grid.best_params_[key]) # add best param to # save best param to db as json string j_str=json.dumps(ml_opts); json2save["param_str"]=j_str; print "INFO: grid_scores_ with params:" for params, mean_score, scores in grid.grid_scores_: print "INFO: %0.3f (+/-%0.03f) for %r" % (mean_score, scores.std() * 2, params) #outstr='%s,%0.3f,%0.03f,%s' % (params,mean_score, scores.std() * 2,"Selected" if params==grid.best_params_ else "") outj={} outj["param"]=params outj["average_accuracy"]="%0.3f" % (mean_score) outj["std_deviation"]="%0.3f" % (scores.std() * 2) outj["selected"]="%s" % ("Selected" if params==grid.best_params_ else "") cv_grid.append(outj) clf_best = grid.best_estimator_ t1 = time() ############# END run with SKlearn ###### print 'INFO: Grid Search with SKlearn running time: %f' %(t1-t0) t0 = time() else: #############run with SPARK###### print "INFO: ******************Grid Search with SPARK************" all_comb_list_of_dic = get_all_combination_list_of_dic(param_dic) print "INFO: Total number of searching combinations=", len(all_comb_list_of_dic) #print "all_comb_list_of_dic: ", all_comb_list_of_dic params_rdd = sc.parallelize(all_comb_list_of_dic) ###broad cast clf, traning data, testing data to all workers### X_broadcast = sc.broadcast(X_train_sparse) y_broadcast = sc.broadcast(labels_train) clf_broadcast = sc.broadcast(clf) ### Grid Search with CV in multiple workers ### models = params_rdd.map(lambda x: learn_with_params(clf_broadcast.value, X_broadcast.value, y_broadcast.value, cv, x)).sortByKey(ascending = False).cache() (ave_accuracy, (clf_best, p_dic_best, std2)) = models.first() # output results # print "INFO: Best parameters set found for ", model_name, " is: " print "INFO: ", for key in p_dic_best: print key, " = ", p_dic_best[key], if key.lower()=="regtype": ml_opts['regularization']=str(p_dic_best[key]) else: ml_opts[key.lower()]=str(p_dic_best[key]) # add best param to # save best param to db as json string print "" j_str=json.dumps(ml_opts); json2save["param_str"]=j_str; print "INFO: Average accuracy with CV = ", cv, ": ", ave_accuracy ######## print complete report ####### print "INFO: Grid scores on development set:" all_results = models.collect() for i in range(0, len(all_results)): (ave_accu_i, (clf_i, p_dic_i, std2_i)) = all_results[i] print "INFO: ",ave_accu_i, " for ", p_dic_i print "INFO: %0.3f (+/-%0.03f) for " % (ave_accu_i, std2_i), p_dic_i #outstr='%s,%0.3f,%0.03f,%s' % ( p_dic_i, ave_accu_i, std2_i, "Selected" if p_dic_i==p_dic_best else "") outj={} outj["param"]=p_dic_i outj["average_accuracy"]="%0.3f" % (ave_accu_i) outj["std_deviation"]="%0.3f" % (std2_i) outj["selected"]="%s" % ("Selected" if p_dic_i==p_dic_best else "") cv_grid.append(outj) print " " t1 = time() ############# END run with SPARK###### print 'INFO: Grid search with SPARK running time: %f' %(t1-t0) ################################################################################## #print "cv_grid=",cv_grid #json2save["cv_grid_title"]='param,average_accuracy,std_deviation,selected' json2save["cv_grid_data"]=cv_grid json2save['clf_best']=str(clf_best).replace("\n","").replace(" ","") cv_result=json.dumps(json2save) #print "INFO: cv_result=",cv_result filter='{"rid":'+row_id_str+',"key":"cv_result"}' upsert_flag=True ## write to mongoDB.myml.dataset_info, ignore doc with duplicated key # db.dataset_info.createIndex({"rid":1,"key":1},{unique:true}) ret=query_mongo.upsert_doc_t(mongo_tuples,filter,cv_result,upsert_flag) print "INFO: Upsert count for cv_result: ret=",ret ################################################################################## ##########Retrain with best model for training set and output results############# ################################################################################## print "INFO: **********Retrain with best model for training set and output results************" clf_best.fit(X_train_sparse, labels_train) #### save clf_best for future use #### #joblib.dump(clf_best, model_data_folder + row_id_str+'.pkl') joblib.dump(clf_best, model_fname) ### Evaluating the model on testing data labels_pred = clf_best.predict(X_test_sparse) accuracy = clf_best.score(X_test_sparse, labels_test) print "INFO: Accuracy = ", accuracy ######################################the rest of the code is the same as train_sklean.py (replace clf with clf_best)##################################################################### clf=clf_best print "INFO: model type=",type(clf)," clf=",clf # get data from model ================================ coef=None intercept=None try: if type(clf) in ( classes.SVC , classes.NuSVC) :# svm didn't have coef_ col_num=clf.support_vectors_.shape[1] else: #linear only # coef_ is only available when using a linear kernel col_num = len(clf.coef_[0]) coef=clf.coef_[0] intercept=clf.intercept_[0] # only get 1st item? #print "**model:clf.coef_[0] =",clf.coef_[0] except Exception as e: print "WARNING: Can't get clf.coef_[0]. e=",e,", get total features from meta-data" col_num = 0 #how to get feature number for sparse array? print "INFO: total feature # in the model: ", col_num jfeat_coef_dict={} # create feature coefficient file ================================ if coef is None: print "WARNING: model weights not found!" else: feat_filename=os.path.join(local_out_dir,row_id_str+"_feat_coef.json") print "INFO: feat_filename=",feat_filename # save coef_arr to mongo & create jfeat_coef_dict=== jfeat_coef_dict=ml_util.ml_save_coef_build_feat_coef(row_id_str, mongo_tuples, coef, intercept, feat_filename, ds_id) #print "INFO: jfeat_coef_dict=", jfeat_coef_dict print "INFO: jfeat_coef_dict len=", len(jfeat_coef_dict ) # filename for false pred false_pred_fname=os.path.join(local_out_dir,row_id_str+"_false_pred.json") print "INFO: false_pred_fname=", false_pred_fname # build files for false pred & score graph (score_arr_0, score_arr_1, max_score,min_score)=ml_build_false_pred(X_test_sparse,coef,intercept , labels_test, labels_pred, test_hash_list, model_name, jfeat_coef_dict, false_pred_fname) # save pred output pred_out_arr=[] for i in range(0,len(labels_test)): pred_out_arr.append((labels_test[i], labels_pred[i], test_hash_list[i])) pred_ofname=os.path.join(local_out_dir,row_id_str+"_pred_output.pkl") print "INFO: pred_ofname=", pred_ofname ml_util.ml_pickle_save(pred_out_arr,pred_ofname) ################################################### ### generate label names (family names) ########### ### connect to database to get the column list which contains all column number of the corresponding feature#### ################################################### if labelnameflag == 1: key = "dic_name_label" jstr_filter='{"rid":'+row_id_str+',"key":"'+key+'"}' jstr_proj='{"value":1}' # get parent dataset's data if ds_id != row_id_str: jstr_filter='{"rid":'+ds_id+',"key":"'+key+'"}' doc=query_mongo.find_one_t(mongo_tuples, jstr_filter, jstr_proj) dic_list = doc['value'] label_dic = {} for i in range(0, len(dic_list)): for key in dic_list[i]: label_dic[dic_list[i][key]] = key.encode('UTF8') print "INFO: label_dic:", label_dic else: label_dic = {} label_set = set(labels_list_all) for label_value in label_set: label_dic[int(label_value)] = str(int(label_value)) print "INFO: ******generated label_dic:", label_dic labels_list = [] for key in sorted(label_dic): labels_list.append(label_dic[key]) ### generate sample numbers of each family in testing data### testing_sample_number = len(labels_test) print "INFO: testing_sample_number=", testing_sample_number test_cnt_dic = {} for key in label_dic: test_cnt_dic[key] = 0 for i in range (0, testing_sample_number): for key in label_dic: if labels_test[i] == key: test_cnt_dic[key] = test_cnt_dic[key] + 1 print "INFO: Number of samples in each label is=", test_cnt_dic ############################################### ###########plot prediction result figure####### ############################################### pred_fname=os.path.join(local_out_dir,row_id_str+"_1"+".png") true_fname=os.path.join(local_out_dir,row_id_str+"_2"+".png") pred_xlabel='Prediction (Single Run)' true_xlabel='True Labels (Single Run)' test_cnt_dic=ml_util.ml_plot_predict_figures(labels_pred.tolist(), labels_test.tolist(), labels_list, label_dic, testing_sample_count , pred_xlabel, pred_fname, true_xlabel, true_fname) print "INFO: figure files: ", pred_fname, true_fname print "INFO: Number of samples in each label is=", test_cnt_dic roc_auc=None #fscore=None perf_measures=None class_count=len(labels_list) dataset_info={"training_fraction":training_fraction, "class_count":class_count,"dataset_count":sample_count} ############################################################# ###################for 2 class only (plot ROC curve)######### ############################################################# if len(labels_list) == 2: # build data file for score graph score_graph_fname=os.path.join(local_out_dir,row_id_str+"_score_graph.json") print "INFO: score_graph_fname=", score_graph_fname ml_build_pred_score_graph(score_arr_0,score_arr_1,model_name, score_graph_fname,max_score,min_score) do_ROC=True reverse_label_dic = dict((v,k) for k, v in label_dic.items()) if 'clean' in reverse_label_dic: flag_clean = reverse_label_dic['clean'] elif 'benign' in reverse_label_dic: flag_clean = reverse_label_dic['benign'] elif '0' in reverse_label_dic: flag_clean = 0 else: print "No ROC curve generated: 'clean' or '0' must be a label for indicating negative class!" do_ROC=False if do_ROC: # calculate fscore ========== perf_measures=ml_util.calculate_fscore(labels_test, labels_pred) print "INFO: perf_measures=",perf_measures confidence_score = clf_best.decision_function(X_test_sparse) if flag_clean == 0: scores = [x for x in confidence_score] s_labels = [x for x in labels_test] testing_N = test_cnt_dic[0] testing_P = test_cnt_dic[1] else: scores = [-x for x in confidence_score] s_labels = [1-x for x in labels_test] testing_N = test_cnt_dic[1] testing_P = test_cnt_dic[0] # create ROC data file ======== ==== roc_auc=ml_create_roc_files(row_id_str, scores, s_labels, testing_N, testing_P , local_out_dir, row_id_str) perf_measures["roc_auc"]=roc_auc # only update db for web request if fromweb=="1": #print "database update" str_sql="UPDATE atdml_document set "+"accuracy = '"+str(accuracy*100)+"%" \ +"', status = 'learned', processed_date ='"+str(datetime.datetime.now()) \ +"',ml_opts='"+j_str \ +"', perf_measures='"+json.dumps(perf_measures) \ +"', dataset_info='"+json.dumps(dataset_info) \ +"' where id="+row_id_str ret=exec_sqlite.exec_sql(str_sql) print "INFO: Data update done! ret=", str(ret) else: print "INFO: accuracy = '"+str(accuracy*100)+"%" print 'INFO: total running time: %f' %(t1-t00) print 'INFO: Finished!' return 0
def train(row_id_str, ds_id, hdfs_feat_dir, local_out_dir, ml_opts_jstr, excluded_feat_cslist, sp_master, spark_rdd_compress, spark_driver_maxResultSize, sp_exe_memory, sp_core_max, zipout_dir, zipcode_dir, zip_file_name, mongo_tuples, labelnameflag, fromweb, training_fraction, jobname): if not os.path.exists(local_out_dir): os.makedirs(local_out_dir) # zip func in other files for Spark workers ================= ================ zip_file_path = ml_build_zip_file(zipout_dir, zipcode_dir, zip_file_name, prefix='zip_feature_util') print "INFO: zip_file_path=", zip_file_path # get_spark_context sc = ml_util.ml_get_spark_context(sp_master, spark_rdd_compress, spark_driver_maxResultSize, sp_exe_memory, sp_core_max, jobname, [zip_file_path]) t0 = time() t00 = t0 # check if ml_opts.has_excluded_feat ==1 =================================== has_excluded_feat = 0 ml_opts = {} if not ml_opts_jstr is None: ml_opts = json.loads(ml_opts_jstr) if "has_excluded_feat" in ml_opts: has_excluded_feat = ml_opts["has_excluded_feat"] #print "has_excluded_feat=",has_excluded_feat,",excluded_feat_cslist=",excluded_feat_cslist # get excluded feature list from mongo ========== === if str(has_excluded_feat) == "1" and excluded_feat_cslist is None: excluded_feat_cslist = ml_util.ml_get_excluded_feat( row_id_str, mongo_tuples) print "INFO: excluded_feat_cslist=", excluded_feat_cslist ### generate Labeled point libsvm_data_file = os.path.join(hdfs_feat_dir, "libsvm_data") print "INFO: libsvm_data_file:", libsvm_data_file # load feature count file feat_count_file = libsvm_data_file + "_feat_count" feature_count = zip_feature_util.get_feature_count(sc, feat_count_file) print "INFO: feature_count=", feature_count # load sample RDD from text file # also exclude selected features in sample ================ ===== # format (LabeledPoint,hash) from str2LabeledPoint_hash() #samples_rdd = MLUtils.loadLibSVMFile(sc, libsvm_data_file) samples_rdd, feature_count = zip_feature_util.get_sample_rdd( sc, libsvm_data_file, feature_count, excluded_feat_cslist) #samples_rdd = MLUtils.loadLibSVMFile(sc, libsvm_data_file) # get distinct label list labels_list_all = samples_rdd.map( lambda p: p[0].label).distinct().collect() ### generate training and testing data training_rdd, testing_rdd = samples_rdd.randomSplit( [training_fraction, 1 - training_fraction]) training_rdd = training_rdd.map(lambda p: p[0]) # keep LabeledPoint only training_rdd.cache() training_sample_count = training_rdd.count() training_lbl_cnt_list = training_rdd.map( lambda p: (p.label, 1)).reduceByKey(add).collect() testing_rdd.cache() testing_sample_count = testing_rdd.count() testing_lbl_cnt_list = testing_rdd.map( lambda p: (p[0].label, 1)).reduceByKey(add).collect() sample_count = training_sample_count + testing_sample_count t1 = time() print "INFO: training sample count=", training_sample_count, ", testing sample count=", testing_sample_count print "INFO: training label list=", training_lbl_cnt_list, ", testing label list=", testing_lbl_cnt_list print "INFO: labels_list_all=", labels_list_all print "INFO: training and testing samples generated!" print 'INFO: running time: %f' % (t1 - t0) t0 = t1 ############################################## ########### Grid Search with CV ############## ############################################## ### get the parameters for cross validation and grid search ### (cv, model_name, param_dict) = generate_param(ml_opts) ### generate label names (family names) ##### ### connect to database to get the column list which contains all column number of the corresponding feature#### if labelnameflag == 1: label_dic = ml_util.ml_get_label_dict(row_id_str, mongo_tuples, ds_id) print "INFO: label_dic:", label_dic else: label_dic = {} label_set = set(labels_list_all) for label_value in label_set: label_dic[int(label_value)] = str(int(label_value)) print "INFO: generated label_dic:", label_dic labels_list = [] for key in sorted(label_dic): labels_list.append(label_dic[key]) #print "labels:", labels_list class_num = len(labels_list) if class_num > 2: print "INFO: Multi-class classification! Number of classes = ", class_num #### generate training and testing rdd(s) for CV##### split_prob = 1.0 / float(cv) split_prob_list = [] for i in range(0, cv): split_prob_list.append(split_prob) list_rdd = training_rdd.randomSplit(split_prob_list) list_train_rdd = [] list_test_rdd = [] for i in range(0, cv): list_rdd[i].cache() for i in range(0, cv): tr_rdd = sc.emptyRDD() for j in range(0, cv): if j == i: pass else: tr_rdd = tr_rdd + list_rdd[j] tr_rdd.cache() list_train_rdd.append(tr_rdd) list_test_rdd.append(list_rdd[i]) all_comb_list_of_dic = get_all_combination_list_of_dic(param_dict) print "INFO: Total number of searching combinations:", len( all_comb_list_of_dic) ### loop for all parameter combinations and search the best parameters with CV### results = [] for p in range(0, len(all_comb_list_of_dic)): params = all_comb_list_of_dic[p] C = params['C'] iteration_num = params['iterations'] regularization = params['regType'] scores = [] for i in range(0, cv): train_rdd = list_train_rdd[i] test_rdd = list_test_rdd[i] train_number = train_rdd.count() regP = C / float(train_number) ### build model ### if model_name == "linear_svm_with_sgd": #print "====================1: Linear SVM=============" model_classification = SVMWithSGD.train( train_rdd, regParam=regP, iterations=iteration_num, regType=regularization) # regParam = 1/(sample_number*C) elif model_name == "logistic_regression_with_lbfgs": #print "====================2: LogisticRegressionWithLBFGS=============" model_classification = LogisticRegressionWithLBFGS.train( train_rdd, regParam=regP, iterations=iteration_num, regType=regularization, numClasses=class_num) # regParam = 1/(sample_number*C) elif model_name == "logistic_regression_with_sgd": #print "====================3: LogisticRegressionWithSGD=============" model_classification = LogisticRegressionWithSGD.train( train_rdd, regParam=regP, iterations=iteration_num, regType=regularization) # regParam = 1/(sample_number*C) else: print "ERROR: Training model selection error: no valid ML model selected!" return ### Evaluating the model on testing data labelsAndPreds = test_rdd.map( lambda p: (p.label, model_classification.predict(p.features))) labelsAndPreds.cache() test_sample_number = test_rdd.count() testErr = labelsAndPreds.filter( lambda (v, p): v != p).count() / float(test_sample_number) accuracy = 1 - testErr #print "Accuracy = ", accuracy scores.append(accuracy) ss = np.asarray(scores) #print "%0.3f (+/-%0.03f) for " % (ss.mean(), ss.std() * 2), params results.append((ss.mean(), ss.std() * 2, params)) sorted_results = sorted(results, key=lambda x: x[0], reverse=1) (best_accuracy, best_std2, best_param) = sorted_results[0] print "INFO: ml_opts_jstr=", ml_opts_jstr print "INFO: best_param=", best_param #ml_opts=json.loads(ml_opts_jstr); print "INFO: ml_opts=", ml_opts ############################################## ######output Grid Search results############## ############################################## json2save = {} json2save["rid"] = int(row_id_str) json2save["key"] = "cv_result" #json2save["param_str"]=ml_opts_jstr json2save["param_dic"] = param_dict cv_grid = [] print "" print "INFO: =====Grid Search Results for SPARK ======" print "INFO: Best parameters set found for ", model_name, " is: " for key in best_param: print "INFO:", key, "=", best_param[key] if key.lower() == "regtype": ml_opts['regularization'] = str(best_param[key]) else: ml_opts[key.lower()] = str(best_param[key]) # add best param to ml_opts_jstr = json.dumps(ml_opts) json2save["param_str"] = ml_opts_jstr print "INFO: Average accuracy with CV = ", cv, ": ", best_accuracy print "" print "INFO: Grid scores on development set:" for i in range(0, len(sorted_results)): (ave_accu_i, std2_i, param_i) = sorted_results[i] print "%0.3f (+/-%0.03f) for " % (ave_accu_i, std2_i), param_i #outstr='%s,%0.3f,%0.03f,%s' % (param_i,ave_accu_i, std2_i,"Selected" if param_i==best_param else "") outj = {} outj["param"] = param_i outj["average_accuracy"] = "%0.3f" % (ave_accu_i) outj["std_deviation"] = "%0.3f" % (std2_i) outj["selected"] = "%s" % ("Selected" if param_i == best_param else "") cv_grid.append(outj) print " " t1 = time() print 'INFO: Grid Search with CV run time: %f' % (t1 - t0) t0 = time() ################################################################################## json2save["cv_grid_data"] = cv_grid cv_result = json.dumps(json2save) print "INFO: cv_result=", cv_result filter = '{"rid":' + row_id_str + ',"key":"cv_result"}' upsert_flag = True ## write to mongoDB.myml.dataset_info, ignore doc with duplicated key # db.dataset_info.createIndex({"rid":1,"key":1},{unique:true}) ret = query_mongo.upsert_doc_t(mongo_tuples, filter, cv_result, upsert_flag) print "INFO: Upsert count for mllib cv_result: ret=", ret ############################################################################################ ########### retrain with all training data and generate the final model with results ####### ############################################################################################ C = best_param['C'] iteration_num = best_param['iterations'] regularization = best_param['regType'] regP = C / float(training_sample_count) ######################################the rest of the code is the same as train_MLlib.py ##################################################################### if model_name == "linear_svm_with_sgd": ### 1: linearSVM print "INFO: ====================1: Linear SVM=============" model_classification = SVMWithSGD.train( training_rdd, regParam=regP, iterations=iteration_num, regType=regularization) # regParam = 1/(sample_number*C) #print model_classification elif model_name == "logistic_regression_with_lbfgs": ### 2: LogisticRegressionWithLBFGS print "INFO: ====================2: LogisticRegressionWithLBFGS=============" model_classification = LogisticRegressionWithLBFGS.train( training_rdd, regParam=regP, iterations=iteration_num, regType=regularization, numClasses=class_num) # regParam = 1/(sample_number*C) elif model_name == "logistic_regression_with_sgd": ### 3: LogisticRegressionWithSGD print "INFO: ====================3: LogisticRegressionWithSGD=============" model_classification = LogisticRegressionWithSGD.train( training_rdd, regParam=regP, iterations=iteration_num, regType=regularization) # regParam = 1/(sample_number*C) else: print "INFO: Training model selection error: no valid ML model selected!" return print "INFO: model type=", type(model_classification) # create feature coefficient file ================================ coef_arr = None intercept = None if model_classification.weights is None: print "WARNING: model weights not found!" else: coef_arr = model_classification.weights.toArray().tolist() # save to mongo key = "coef_arr" ret = ml_util.save_json_t(row_id_str, key, coef_arr, mongo_tuples) # save intercept to mongo key = "coef_intercept" intercept = model_classification.intercept ret = ml_util.save_json_t(row_id_str, key, intercept, mongo_tuples) # feature list + coef file ============= feat_filename = os.path.join(local_out_dir, row_id_str + "_feat_coef.json") print "INFO: feat_filename=", feat_filename # create feature list + coef file =============================================== ============ # expect a dict of {"fid":(coef, feature_raw_string)} jret = ml_util.build_feat_list_t(row_id_str, feat_filename, None, None, coef_arr, ds_id, mongo_tuples) # special featuring for IN or libsvm if jret is None: jret = ml_util.build_feat_coef_raw_list_t(row_id_str, feat_filename, coef_arr, ds_id, mongo_tuples) if jret is None: print "WARNING: Cannot create sample list for testing dataset. " jfeat_coef_dict = jret print "INFO: coef_arr len=", len( coef_arr), ", feature_count=", feature_count # for multi-class if len(coef_arr) != feature_count: jfeat_coef_dict = {} print "WARNING: feature list can't be shown for multi-class classification" # Calculate prediction and Save testing dataset bt_coef_arr = sc.broadcast(coef_arr) bt_intercept = sc.broadcast(intercept) bt_jfeat_coef_dict = sc.broadcast(jfeat_coef_dict) ### Evaluating the model on testing dataset: label, predict label, score, feature list print "INFO: intercept=", intercept print "INFO: coef_arr len=", len(coef_arr) print "INFO: jfeat_coef_dict len=", len(jfeat_coef_dict) # get prediction of testing dataset : (tlabel, plabel, score, libsvm, raw feat str, hash) ============================== if len(coef_arr) == feature_count: testing_pred_rdd = testing_rdd.map(lambda p: ( p[0].label \ ,model_classification.predict(p[0].features) \ ,zip_feature_util.calculate_hypothesis(p[0].features, bt_coef_arr.value, bt_intercept.value, model_name) \ ,p[0].features \ ,p[1] \ ) ).cache() else: # for multi-class, no prediction score;, TBD for better solution: how to display multiple weights for each class testing_pred_rdd = testing_rdd.map(lambda p: ( p[0].label \ ,model_classification.predict(p[0].features) \ ,0 \ ,p[0].features \ ,p[1] \ ) ).cache() # save false prediction to local file false_pred_fname = os.path.join(local_out_dir, row_id_str + "_false_pred.json") print "INFO: false_pred_fname=", false_pred_fname false_pred_data=testing_pred_rdd.filter(lambda p: p[0] != p[1])\ .map(lambda p: (p[0],p[1],p[2] \ ,zip_feature_util.get_dict_coef_raw4feat(zip_feature_util.sparseVector2dict(p[3]), bt_jfeat_coef_dict.value) ,p[4] ) ) \ .collect() print "INFO: false predicted count=", len(false_pred_data) false_pred_arr = [] with open(false_pred_fname, "w") as fp: for sp in false_pred_data: jsp = { "tlabel": sp[0], "plabel": sp[1], "score": sp[2], "feat": sp[3], "hash": sp[4] } #print "jsp=",jsp false_pred_arr.append(jsp) fp.write(json.dumps(false_pred_arr)) # save prediction results, format: label, prediction, hash pred_ofname = os.path.join(local_out_dir, row_id_str + "_pred_output.pkl") print "INFO: pred_ofname=", pred_ofname pred_out_arr = testing_pred_rdd.map(lambda p: (p[0], p[1], p[4])).collect() ml_util.ml_pickle_save(pred_out_arr, pred_ofname) ### Evaluating the model on testing data #labelsAndPreds = testing_rdd.map(lambda p: (p.label, model_classification.predict(p.features))) labelsAndPreds = testing_pred_rdd.map(lambda p: (p[0], p[1])) labelsAndPreds.cache() #testing_sample_count = testing_rdd.count() testErr = labelsAndPreds.filter(lambda (v, p): v != p).count() / float( testing_sample_count) accuracy = 1 - testErr print "INFO: Accuracy = ", accuracy ### Save model #save_dir = config.get('app', 'HADOOP_MASTER')+'/user/hadoop/yigai/row_6/' #save_dir = config.get('app', 'HADOOP_MASTER')+config.get('app', 'HDFS_MODEL_DIR')+'/'+row_id_str save_dir = os.path.join(config.get('app', 'HADOOP_MASTER'), config.get('app', 'HDFS_MODEL_DIR'), row_id_str) try: hdfs.ls(save_dir) #print "find hdfs folder" hdfs.rmr(save_dir) #print "all files removed" except IOError as e: print "WARNING: I/O error({0}): {1}".format( e.errno, e.strerror), ". At HDFS=", save_dir except: print "WARNING: Unexpected error:", sys.exc_info( )[0], ". At HDFS=", save_dir model_classification.save(sc, save_dir) ###load model if needed #sameModel = SVMModel.load(sc, save_dir) t1 = time() print 'INFO: training run time: %f' % (t1 - t0) t0 = t1 ############################################### ###########plot prediction result figure####### ############################################### labels = labelsAndPreds.collect() true_label_list = [x for x, _ in labels] pred_label_list = [x for _, x in labels] pred_fname = os.path.join(local_out_dir, row_id_str + "_1" + ".png") true_fname = os.path.join(local_out_dir, row_id_str + "_2" + ".png") pred_xlabel = 'Prediction (Single Run)' true_xlabel = 'True Labels (Single Run)' test_cnt_dic = ml_util.ml_plot_predict_figures( pred_label_list, true_label_list, labels_list, label_dic, testing_sample_count, pred_xlabel, pred_fname, true_xlabel, true_fname) plt.show() perf_measures = None dataset_info = { "training_fraction": training_fraction, "class_count": class_num, "dataset_count": sample_count } ############################################################# ###################for 2 class only (plot ROC curve)######### ############################################################# if len(labels_list) == 2: do_ROC = True reverse_label_dic = dict((v, k) for k, v in label_dic.items()) if 'clean' in reverse_label_dic: flag_clean = reverse_label_dic['clean'] elif 'benign' in reverse_label_dic: flag_clean = reverse_label_dic['benign'] elif '0' in reverse_label_dic: flag_clean = 0 else: print "WARNING: No ROC curve generated: 'clean' or '0' must be a label for indicating negative class!" do_ROC = False # build data file for score graph score_graph_fname = os.path.join(local_out_dir, row_id_str + "_score_graph.json") print "INFO: score_graph_fname=", score_graph_fname # build score_arr_0, score_arr_1 # format: tlabel, plabel, score, libsvm, raw feat str, hash graph_arr = testing_pred_rdd.map(lambda p: (int(p[0]), float(p[2]))).collect() score_arr_0 = [] score_arr_1 = [] max_score = 0 min_score = 0 for p in graph_arr: if p[0] == 0: score_arr_0.append(p[1]) else: score_arr_1.append(p[1]) # save max,min score if p[1] > max_score: max_score = p[1] elif p[1] < min_score: min_score = p[1] ml_build_pred_score_graph(score_arr_0, score_arr_1, model_name, score_graph_fname, max_score, min_score) #print "score_arr_0=",score_arr_0 #print "score_arr_1=",score_arr_1 #print "max_score=",max_score #print "min_score=",min_score if do_ROC: perf_measures = ml_util.calculate_fscore(true_label_list, pred_label_list) print "RESULT: perf_measures=", perf_measures model_classification.clearThreshold() scoreAndLabels = testing_rdd.map(lambda p: ( model_classification.predict(p[0].features), int(p[0].label))) #metrics = BinaryClassificationMetrics(scoreAndLabels) #areROC = metrics.areaUnderROC #print areROC scoreAndLabels_list = scoreAndLabels.collect() if flag_clean == 0: scores = [x for x, _ in scoreAndLabels_list] s_labels = [x for _, x in scoreAndLabels_list] testing_N = test_cnt_dic[0] testing_P = test_cnt_dic[1] else: scores = [-x for x, _ in scoreAndLabels_list] s_labels = [1 - x for _, x in scoreAndLabels_list] testing_N = test_cnt_dic[1] testing_P = test_cnt_dic[0] #print scores #print s_labels # create ROC data file ======== ==== roc_auc = ml_create_roc_files(row_id_str, scores, s_labels, testing_N, testing_P, local_out_dir, row_id_str) perf_measures["roc_auc"] = roc_auc # only update db for web request if fromweb == "1": #print "database update" str_sql="UPDATE atdml_document set "+"accuracy = '"+str(accuracy*100)+"%" \ +"', status = 'learned', processed_date ='"+str(datetime.datetime.now()) \ +"',ml_opts='"+ml_opts_jstr \ +"', perf_measures='"+json.dumps(perf_measures) \ +"', dataset_info='"+json.dumps(dataset_info) \ +"' where id="+row_id_str ret = exec_sqlite.exec_sql(str_sql) print "INFO: Data update done! ret=", str(ret) else: print "INFO: accuracy = '" + str(accuracy * 100) + "%" t1 = time() print 'INFO: total run time: %f' % (t1 - t00) print 'INFO: Finished!' return 0
def pca(row_id_str, ds_id, hdfs_feat_dir, local_out_dir , sp_master, spark_rdd_compress, spark_driver_maxResultSize, sp_exe_memory, sp_core_max , zipout_dir, zipcode_dir, zip_file_name , mongo_tuples, fromweb, pca_jstr , jobname, model_data_folder ): # create zip files for Spark workers ================= ================ zip_file_path = ml_build_zip_file(zipout_dir, zipcode_dir, zip_file_name, prefix='zip_feature_util') print "INFO: zip_file_path=",zip_file_path # init Spark context ==== sc=ml_util.ml_get_spark_context(sp_master , spark_rdd_compress , spark_driver_maxResultSize , sp_exe_memory , sp_core_max , jobname , [zip_file_path]) pca_param=json.loads(pca_jstr) if "k" in pca_param: k=pca_param["k"] else: k=None if "threshold" in pca_param: threshold=pca_param["threshold"] else: threshold=None if "lib" in pca_param: lib=pca_param["lib"] else: lib='mllib' ret=-1 # start here =================================================================== =============== t0 = time() # source libsvm filename libsvm_data_file = os.path.join(hdfs_feat_dir , "libsvm_data") print "INFO: libsvm_data_file=", libsvm_data_file # load sample RDD from text file # format Row(label, features, hash) from get_sample_dataframe() samples_df, feature_count = zip_feature_util.get_sample_dataframe(sc, libsvm_data_file, 0, None) print "INFO: feature_count=",feature_count #df_pcaed format: hash,label, features (df_pcaed, k, pca_model)=PCA_transform(sc, samples_df,feature_count, threshold, k) print "INFO: Doing PCA... threshold=",threshold,",k=",k #print "df_pcaed=",df_pcaed.first() #print "k=",k #print "pca_model=",pca_model #print "pc=",pca_model.pc # pca model filename ============================= =============== if model_data_folder is None: if row_id_str != ds_id: # get from parent dataset model_data_folder = os.path.join(config.get('app', 'HADOOP_MASTER'),config.get('app', 'HDFS_MODEL_DIR'), ds_id+"_pca") else: model_data_folder = os.path.join(config.get('app', 'HADOOP_MASTER'),config.get('app', 'HDFS_MODEL_DIR'), row_id_str+"_pca") # create HDFS folder try: hdfs.mkdir(model_data_folder) except IOError as e: print "WARNING: I/O error({0}): {1}".format(e.errno, e.strerror),". At HDFS=", save_dir except: print "WARNING: Unexpected error:", sys.exc_info()[0] ,". At HDFS=", save_dir if not threshold is None: #pca_fname=os.path.join(hdfs_feat_dir , row_id_str+'_pca_'+str(threshold)+'.ml') pca_fname=os.path.join(model_data_folder , 'pca_model_'+str(threshold)) libsvm_data_pca = os.path.join(hdfs_feat_dir , "libsvm_data_pca_"+str(threshold)+'.ml') else: pca_fname=os.path.join(model_data_folder , 'pca_model_'+str(k)) libsvm_data_pca = os.path.join(hdfs_feat_dir , "libsvm_data_pca_"+str(k)+'.ml') # save pca model to HDFS =============== print "INFO: pca_fname=",pca_fname pca_model.write().overwrite().save(pca_fname) # save pca data to HDFS ============================= =============== print "INFO: libsvm_data_pca=",libsvm_data_pca # construct libsvm string libsvm_rdd=df_pcaed.rdd.map(lambda p: p[0]+" "+str(int(p[1]))+zip_feature_util.dv2libsvm(p[2].toArray())) # clean up old libsvm file ============================= =============== try: hdfs.rmr(libsvm_data_pca) except IOError as e: print "WARNING: I/O error({0}): {1}".format(e.errno, e.strerror) except: print "WARNING: Unexpected error at rmr():", sys.exc_info()[0] # overwrite pca file at hdfs libsvm_rdd.saveAsTextFile(libsvm_data_pca) t1 = time() print 'INFO: PCA processing time: %f' %(t1-t0) ### insert pca_param into mongoDB ### filter='{"rid":'+row_id_str+',"key":"pca_param"}' if not threshold is None: pca_param["threshold"]=threshold if not k is None: pca_param["k"]=k print "INFO: pca_param=",pca_param upsert_flag=True jstr_insert = '{ "rid":'+row_id_str+',"key":"pca_param", "value":'+json.dumps(pca_param)+'}' ret=query_mongo.upsert_doc_t(mongo_tuples,filter,jstr_insert,upsert_flag) print "INFO: Upsert count for pca_param=",ret # only update db for web request =========== if fromweb=="1": #print "database update" str_sql="UPDATE atdml_document set " \ +" status = 'pca-ed', processed_date ='"+str(datetime.datetime.now()) \ +"' , ml_pca_opts = '"+json.dumps(pca_param) \ +"' where id="+row_id_str ret=exec_sqlite.exec_sql(str_sql) print "INFO: Update Sqlite DB done! ret=", str(ret) t1 = time() print 'INFO: running time: %f' %(t1-t0) #print 'Finished!' return 0
def feat_extraction(row_id_str, hdfs_dir_list, hdfs_feat_dir, model_data_folder, sp_master, spark_rdd_compress, spark_driver_maxResultSize, sp_exe_memory, sp_core_max, zipout_dir, zipcode_dir, zip_file_name, mongo_tuples, fromweb, label_arr, metadata_count, label_idx, data_idx, pattern_str, ln_delimitor, data_field_list, jkey_dict, jobname, num_gram, feature_count_threshold, token_dict=None, HDFS_RETR_DIR=None, remove_duplicated="N", cust_featuring=None, cust_featuring_params=None, local_out_dir=None, filter_ratio=None, binary_flag=False): # zip func in other files for Spark workers ================= ================ zip_file_path = ml_util.ml_build_zip_file(zipout_dir, zipcode_dir, zip_file_name, user_custom=cust_featuring) # get_spark_context spark = ml_util.ml_get_spark_session(sp_master, spark_rdd_compress, spark_driver_maxResultSize, sp_exe_memory, sp_core_max, jobname, zip_file_path) if spark: sc = spark.sparkContext # log time ================================================================ ================ t0 = time() # input filename input_filename = "*" ext_type = '.gz' gz_list = None # single hdfs file if not ',' in hdfs_dir_list: # single dir having *.gz ==== ========= # read raw data from HDFS as .gz format ========== hdfs_files = os.path.join(hdfs_dir_list, input_filename + ext_type) # check if gz files in hdfs ============ try: gz_list = hdfs.ls(hdfs_dir_list) print "INFO: check hdfs folder=", hdfs_dir_list except IOError as e: print "WARNING: I/O error({0}): {1}".format(e.errno, e.strerror) except: print "WARNING: Error at checking HDFS file:", sys.exc_info()[0] # use whole folder #print "gz_list",gz_list if gz_list is None or len(gz_list) == 0: print "ERROR: No file found by ", input_filename + ext_type #,", use",hdfs_dir_list,"instead" return -2 elif len(gz_list) == 1: # use dir as filename hdfs_files = hdfs_dir_list[0:-1] else: # multiple dirs ==== ========= hdfs_files = "" cnt = 0 temp_lbl_list = [] comma = "" print "INFO: before label_arr=", label_arr # check each folder for dr in hdfs_dir_list.split(','): #print "****=",dr if not len(dr) > 0: continue try: # remove space etc. dr = dr.strip() fdr = os.path.join(HDFS_RETR_DIR, dr) # ls didn't like "*" if '*' in fdr: #gz_list=hdfs.ls(fdr.replace("*","")) dn = os.path.dirname(fdr).strip() bn = os.path.basename( fdr).strip() #print "dn=",dn,",bn=",bn # get all names under folder and do filtering gz_list = fnmatch.filter(hdfs.ls(dn), '*' + bn) else: gz_list = hdfs.ls(fdr) cnt = cnt + len(gz_list) if len(gz_list) > 0: hdfs_files = hdfs_files + comma + fdr comma = "," except IOError as e: print "WARNING: I/O error({0}): {1}".format( e.errno, e.strerror) except: print "WARNING: Error at checking HDFS file:", sys.exc_info( )[0] # use whole folder if cnt is None or cnt == 0: print "ERROR: No file found at", hdfs_files return -2 else: print "INFO: total file count=", cnt # set convert flag only when multiple dir and label_arr has dirty label if not label_arr is None and len( label_arr) == 2 and label_arr[1] == "dirty": convert2dirty = "Y" print "INFO: hdfs_dir_list=", hdfs_dir_list print "INFO: hdfs_files=", hdfs_files cust_featuring_jparams = None # custom featuring if not cust_featuring is None and len(cust_featuring) > 0: # load user module ======= user_func, cust_featuring_jparams = get_user_custom_func( cust_featuring, cust_featuring_params) # TBD apply user_func all_hashes_cnt_dic = None all_hash_str_dic = None all_hashes_seq_dic = None else: print "ERROR: custom featuring type is needed" print "INFO: cust_featuring=", cust_featuring, "cust_featuring_jparams=", cust_featuring_jparams dnn_flag = False has_header = None label_col = None label_index = None # get featuring params if cust_featuring_jparams: if 'label_index' in cust_featuring_jparams: # idx number for label, 0 based label_index = cust_featuring_jparams['label_index'] if 'has_header' in cust_featuring_jparams: # True/False has_header = eval(cust_featuring_jparams['has_header']) if has_header == 1: has_header = True if 'dnn_flag' in cust_featuring_jparams: # True/False dnn_flag = cust_featuring_jparams['dnn_flag'] if dnn_flag == 1: dnn_flag = True elif dnn_flag == 0: dnn_flag = False if label_index is None: label_index = 0 elif not isinstance(label_index, int): label_index = eval(label_index) print "INFO: label_index=", label_index, ",has_header=", has_header, ",dnn_flag=", dnn_flag # read as DataFrame =============================================== df = spark.read.csv(hdfs_files, header=has_header) df.show() print "INFO: col names=", df.columns # get column name for label label_col = None for i, v in enumerate(df.columns): if i == label_index: label_col = v # get all distinct labels into an array =============== provided by parameter? if label_arr is None and not label_col is None: label_arr = sorted([ rw[label_col] for rw in df.select(label_col).distinct().collect() ]) print "INFO: label_arr=", label_arr label_dic = {} # convert label_arr to dict; {label:number| for idx, label in enumerate(sorted(label_arr)): if not label in label_dic: label_dic[ label] = idx #starting from 0, value = idx, e.g., clean:0, dirty:1 # add params for dataframe conversion cust_featuring_jparams["label_dict"] = label_dic # convert to int cust_featuring_jparams["label_index"] = label_index featuring_params = json.dumps(cust_featuring_jparams) # convert DataFrame row to libsvm string libsvm_rdd = df.rdd.map(lambda x: user_func(list(x), featuring_params)) print "INFO: sample df row=", (libsvm_rdd.collect()[0]) print "INFO: featuring_params=", featuring_params total_input_count = df.count() print "INFO: Total input sample count=", total_input_count #print "INFO: feature_count_threshold=",feature_count_threshold #get all hashes and total occurring count =============== # all_hashes_cnt_dic: {'col index': total count,... } # build all_hashes_cnt_dic cnt_df = df.select( [count(when(~isnull(c), c)).alias(c) for c in df.columns]) #cnt_df.show() cnt_arr = cnt_df.rdd.map(lambda x: list(x)).collect() feat_sample_count_arr = cnt_arr[0] #print "feat_sample_count_arr=",feat_sample_count_arr if all_hashes_cnt_dic is None: all_hashes_cnt_dic = {} idx = 1 for i, v in enumerate(feat_sample_count_arr): if i != label_index: all_hashes_cnt_dic[idx] = v idx += 1 #print "all_hashes_cnt_dic=",all_hashes_cnt_dic #get all hashes and their extracted string =============== # all_hash_str_dic: {hash:'str1', ... if all_hash_str_dic is None: # convert header to dict=index:string; excude label column all_hash_str_dic = {} idx = 1 for i, v in enumerate(df.schema.names): if i != label_index: all_hash_str_dic[idx] = v idx += 1 #print "all_hash_str_dic=",all_hash_str_dic # save labels to hdfs as text file==================================== ============ hdfs_folder = hdfs_feat_dir #+ "/" # "/" is needed to create the folder correctly print "INFO: hdfs_folder=", hdfs_folder try: hdfs.mkdir(hdfs_folder) except IOError as e: print "WARNING: I/O error({0}): {1}".format(e.errno, e.strerror) except: print "WARNING: Unexpected error at mkdir:", sys.exc_info()[0] # clean up metadata_file metadata_file = os.path.join(hdfs_folder, metadata) #"metadata" print "INFO: metadata_file=", metadata_file try: hdfs.rmr(metadata_file) except IOError as e: print "WARNING: I/O error({0}): {1}".format(e.errno, e.strerror) except: print "WARNING: Unexpected error at rmr():", sys.exc_info()[0] sc.parallelize(label_arr, 1).saveAsTextFile(metadata_file) #remap all hash values to continuous key/feature number ============== # all_hashes_seq_dic: { hash : sequential_numb } if all_hashes_seq_dic is None: all_hashes_seq_dic = {} # csv column index as sequentail number remap2seq(all_hash_str_dic, all_hashes_seq_dic) #print "all_hashes_seq_dic=",all_hashes_seq_dic total_feature_numb = len(all_hashes_seq_dic) print "INFO: Total feature count=", len(all_hashes_seq_dic) # save feat_sample_count_arr data ==================================== ============ filter = '{"rid":' + row_id_str + ',"key":"feat_sample_count_arr"}' upsert_flag = True jo_insert = {} jo_insert["rid"] = eval(row_id_str) jo_insert["key"] = "feat_sample_count_arr" jo_insert["value"] = feat_sample_count_arr jstr_insert = json.dumps(jo_insert) ret = query_mongo.upsert_doc_t(mongo_tuples, filter, jstr_insert, upsert_flag) print "INFO: Upsert count for feat_sample_count_arr=", ret # insert failed, save to local if ret == 0: # drop old record in mongo ret = query_mongo.delete_many(mongo_tuples, None, filter) if not os.path.exists(local_out_dir): os.makedirs(local_out_dir) fsca_hs = os.path.join(local_out_dir, row_id_str, row_id_str + "_feat_sample_count_arr.pkl") print "WARNING: save feat_sample_count_arr to local" ml_util.ml_pickle_save(feat_sample_count_arr, fsca_hs) # get rdd statistics info # remove duplicated libsvm string; only keep the first duplicated item, assume space following key_idx if remove_duplicated == "Y": libsvm_rdd=libsvm_rdd \ .map(lambda x: ( ','.join(x.split(' ')[metadata_count:]), x)) \ .groupByKey().map(lambda x: list(x[1])[0] ) \ .cache() cnt_list = libsvm_rdd.map(lambda x: (x.split(' ')[1], 1)).reduceByKey( add).collect() stats = libsvm_rdd.map( lambda x: len(x.split(' ')[metadata_count:])).stats() feat_count_max = stats.max() feat_count_stdev = stats.stdev() feat_count_mean = stats.mean() sample_count = stats.count() print "INFO: Non-Duplicated libsvm data: sample count=", sample_count, ",Feat count mean=", feat_count_mean, ",Stdev=", feat_count_stdev print "INFO: ,max feature count=", feat_count_max print "INFO: Non-Duplicated Label count list=", cnt_list # clean up libsvm data ==================================== ============ libsvm_data_file = os.path.join(hdfs_folder, libsvm_alldata_filename) #"libsvm_data" print "INFO: libsvm_data_file=", libsvm_data_file try: hdfs.rmr(libsvm_data_file) except IOError as e: print "WARNING: I/O error({0}): {1} at libsvm_data_file clean up".format( e.errno, e.strerror) except: print "WARNING: Unexpected error at libsvm file clean up:", sys.exc_info( )[0] #codec = "org.apache.hadoop.io.compress.GzipCodec" #libsvm_rdd.saveAsTextFile(libsvm_data_file, codec) libsvm_rdd.saveAsTextFile(libsvm_data_file) # TBD encrypted feat_count_file = libsvm_data_file + "_feat_count" print "INFO: feat_count_file=", feat_count_file try: hdfs.rmr(feat_count_file) except IOError as e: print "WARNING: I/O error({0}): {1} at feat_count clean up".format( e.errno, e.strerror) except: print "WARNING: Unexpected error at libsvm feature count clean up:", sys.exc_info( )[0] sc.parallelize([total_feature_numb], 1).saveAsTextFile(feat_count_file) # TBD ??? output text for DNN:[meta-data1,meta-data2,..., [feature tokens]] ================= DNN =========== if dnn_flag: # special flag to tokenize and keep input orders print "INFO: processing data for DNN..." # create token dict # str_hash_dict: string to hash # all_hashes_seq_dic: hash to seq id if token_dict is None or len(token_dict) == 0: token_dict = {} str_hash_dict = {v: k for k, v in all_hash_str_dic.iteritems()} for k, v in str_hash_dict.iteritems(): token_dict[k] = int(all_hashes_seq_dic[str(v)]) #print "token_dict=",len(token_dict),token_dict # TBD here: need to implement non-binary feature dnn_rdd=df.rdd \ .map(lambda x: tokenize_by_dict(x, data_idx, token_dict,label_idx, label_dic)) \ .filter(lambda x: len(x) > metadata_count) \ .filter(lambda x: type(x[metadata_count]) is list) #.cache() # filter duplication here #print dnn_rdd.take(3) dnn_data_file = os.path.join(hdfs_folder, dnn_alldata_filename) #"dnn_data" print "INFO: dnn_data_file=", dnn_data_file try: hdfs.rmr(dnn_data_file) except IOError as e: print "WARNING: I/O error({0}): {1} at dnn_data_file clean up".format( e.errno, e.strerror) except: print "WARNING: Unexpected error at libsvm file clean up:", sys.exc_info( )[0] # clean up data dnn_npy_gz_file = os.path.join(hdfs_folder, row_id_str + "_dnn_") print "INFO: dnn_npy_gz_file=", dnn_npy_gz_file try: hdfs.rmr(dnn_npy_gz_file + "data.npy.gz") hdfs.rmr(dnn_npy_gz_file + "label.npy.gz") hdfs.rmr(dnn_npy_gz_file + "info.npy.gz") except IOError as e: print "WARNING: I/O error({0}): {1} at dnn_npy clean up".format( e.errno, e.strerror) except: print "WARNING: Unexpected error at dnn_npy file clean up:", sys.exc_info( )[0] # save new data try: dnn_rdd.saveAsTextFile(dnn_data_file) except: print "WARNING: Unexpected error at saving dnn data:", sys.exc_info( )[0] # show data statistics try: stats = dnn_rdd.map(lambda p: len(p[metadata_count])).stats() feat_count_max = stats.max() feat_count_stdev = stats.stdev() feat_count_mean = stats.mean() sample_count = stats.count() print "INFO: DNN data: sample count=", sample_count, ",Feat count mean=", feat_count_mean, ",Stdev=", feat_count_stdev print "INFO: ,max feature count=", feat_count_max except: print "WARNING: Unexpected error at getting stats of dnn_rdd:", sys.exc_info( )[0] # clean up pca data in hdfs ============ ======================== pca_files = '*' + libsvm_alldata_filename + "_pca_*" #print "INFO: pca_files=", pca_files try: f_list = hdfs.ls(hdfs_folder) if len(f_list) > 0: df_list = fnmatch.filter(f_list, pca_files) for f in df_list: print "INFO: rm ", f hdfs.rmr(f) except IOError as e: print "WARNING: I/O error({0}): {1}".format(e.errno, e.strerror) except: print "WARNING: Unexpected error at libsvm pca file clean up:", sys.exc_info( )[0] # clean up pca data in web local ============ ======================== pca_fname = os.path.join(model_data_folder, row_id_str + '_pca_*.pkl*') print "INFO: pca_fname=", pca_fname try: for fl in glob.glob(pca_fname): print "INFO: remove ", fl os.remove(fl) except OSError, e: print("Error: %s - %s." % (e.pca_fname, e.strerror))
def feat_extr_ngram(row_id_str, hdfs_dir_list, hdfs_feat_dir, model_data_folder, sp_master, spark_rdd_compress, spark_driver_maxResultSize, sp_exe_memory, sp_core_max, zipout_dir, zipcode_dir, zip_file_name, mongo_tuples, fromweb, label_arr, metadata_count, label_idx, data_idx, pattern_str, ln_delimitor, data_field_list, jkey_dict, jobname, num_gram, feature_count_threshold, token_dict=None, HDFS_RETR_DIR=None, remove_duplicated="N", cust_featuring=None, cust_featuring_params=None, local_out_dir=None, filter_ratio=None, binary_flag=True): # zip func in other files for Spark workers ================= ================ zip_file_path = ml_util.ml_build_zip_file(zipout_dir, zipcode_dir, zip_file_name, user_custom=cust_featuring) # get_spark_context sc = ml_util.ml_get_spark_context(sp_master, spark_rdd_compress, spark_driver_maxResultSize, sp_exe_memory, sp_core_max, jobname, [zip_file_path]) # log time ================================================================ ================ t0 = time() # input filename input_filename = "*" ext_type = '.gz' gz_list = None convert2dirty = "N" if not ',' in hdfs_dir_list: # single dir having *.gz ==== ========= # read raw data from HDFS as .gz format ========== rdd_files = os.path.join(hdfs_dir_list, input_filename + ext_type) # check if gz files in hdfs ============ try: gz_list = hdfs.ls(hdfs_dir_list) print "INFO: check hdfs folder=", hdfs_dir_list except IOError as e: print "WARNING: I/O error({0}): {1}".format(e.errno, e.strerror) except: print "WARNING: Error at checking HDFS file:", sys.exc_info()[0] # use whole folder if gz_list is None or len(gz_list) == 0: print "ERROR: No file found by ", input_filename + ext_type #,", use",hdfs_dir_list,"instead" return -2 elif len(gz_list) == 1: # use dir as filename rdd_files = hdfs_dir_list[0:-1] else: # multiple dirs ==== ========= rdd_files = "" cnt = 0 temp_lbl_list = [] comma = "" print "INFO: before label_arr=", label_arr # check each folder for dr in hdfs_dir_list.split(','): #print "****=",dr if not len(dr) > 0: continue try: # remove space etc. dr = dr.strip() fdr = os.path.join(HDFS_RETR_DIR, dr) #print "fdr=",fdr # ls didn't like "*" if '*' in fdr: #gz_list=hdfs.ls(fdr.replace("*","")) dn = os.path.dirname(fdr).strip() bn = os.path.basename(fdr).strip() #print "dn=",dn,",bn=",bn # get all names under folder and do filtering gz_list = fnmatch.filter(hdfs.ls(dn), '*' + bn) #print "gz_list=",gz_list else: gz_list = hdfs.ls(fdr) cnt = cnt + len(gz_list) if len(gz_list) > 0: rdd_files = rdd_files + comma + fdr comma = "," except IOError as e: print "WARNING: I/O error({0}): {1}".format( e.errno, e.strerror) except: print "WARNING: Error at checking HDFS file:", sys.exc_info( )[0] # use whole folder if cnt is None or cnt == 0: print "ERROR: No file found at", rdd_files return -2 else: print "INFO: total file count=", cnt # set convert flag only when multiple dir and label_arr has dirty label #if label_arr is None: # create label arr if None # label_arr=temp_lbl_list if not label_arr is None and len( label_arr) == 2 and label_arr[1] == "dirty": convert2dirty = "Y" print "INFO: rdd_files=", rdd_files txt_rdd = sc.textFile(rdd_files) #, use_unicode=False total_input_count = txt_rdd.count() print "INFO: Total input sample count=", total_input_count # debug only #for x in txt_rdd.collect(): # print "t=",x print "INFO: hdfs_dir_list=", hdfs_dir_list print "INFO: label_arr=", label_arr print "INFO: feature_count_threshold=", feature_count_threshold #jkey_dict={"meta_list":["label","md5","mdate"], "data_key":"logs"} # this dict depends on the format of input data if not data_field_list is None: jkey_dict = json.loads(jkey_dict) data_key = jkey_dict["data_key"] meta_list = jkey_dict["meta_list"] metadata_count = len(meta_list) data_idx = metadata_count print "INFO: jkey_dict=", jkey_dict print "INFO: meta_list=", meta_list print "INFO: data_key=", data_key print "INFO: data_field_list=", data_field_list print "INFO: metadata_count=", metadata_count featured_rdd = txt_rdd \ .map(lambda x: preprocess_json(x,meta_list,data_key,data_field_list)) \ .filter(lambda x: len(x) > metadata_count) \ .filter(lambda x: type(x[metadata_count]) is list) \ .map(lambda x: feature_extraction_ngram(x, data_idx, MAX_FEATURES, num_gram)) \ .filter(lambda x: len(x) > metadata_count) \ .filter(lambda x: type(x[metadata_count]) is dict) \ .filter(lambda x: type(x[metadata_count+1]) is dict) \ .filter(lambda x: len(x[metadata_count])> int(feature_count_threshold) ) \ .cache() #print "INFO: featured_rdd=" #for x in featured_rdd.collect(): # print "INFO: **** f=",x # user custom code for featuring ============================================= ========== # input txt_rdd format (string): each text row for each sample # output featured_rdd format (list):[meta-data1,meta-data2,..., hash_cnt_dic, hash_str_dic] elif not cust_featuring is None and len(cust_featuring) > 0: user_module = None user_func = None user_func_dnn = None # load user module ======= try: modules = map(__import__, [CUSTOM_PREFIX + cust_featuring]) user_module = modules[0] user_func = getattr(user_module, CUSTOM_FUNC) except Exception as e: print "ERROR: module=", CUSTOM_PREFIX + cust_featuring print "ERROR: user module error.", e.__doc__, e.message return -101 try: jparams = json.loads(cust_featuring_params) if jparams and 'n-gram' in jparams: num_gram = jparams['n-gram'] elif jparams and 'ngram' in jparams: num_gram = jparams['ngram'] if jparams and 'binary_flag' in jparams: binary_flag = eval(jparams['binary_flag']) except Exception as e: print "ERROR: user params error.", e.__doc__, e.message return -200 # convert feast into array. output format: [ meta1,meta2,..., [feat1,feat2,...]] tmp_rdd = txt_rdd.map(lambda x: user_func(x, cust_featuring_params)) \ .filter(lambda x: len(x) > metadata_count) \ .filter(lambda x: type(x[metadata_count]) is list).cache() print " tmp_rdd cnt=", tmp_rdd.count( ), ",ix=", data_idx, ",max f=", MAX_FEATURES, "ngram=", num_gram print "take(1) rdd=", tmp_rdd.take(1) # TBD for multivariant output format: [ meta1,meta2,..., [[feat1,feat2,...],[feat1,feat2,...],...]] # TBD only for num_gram available # for traditional ML, feat in a dict # output format: [ meta1,meta2,..., [[feat1,feat2,...],[feat1,feat2,...],...]] featured_rdd = tmp_rdd \ .map(lambda x: feature_extraction_ngram(x, data_idx, MAX_FEATURES, num_gram)) \ .filter(lambda x: len(x) > metadata_count) \ .filter(lambda x: type(x[metadata_count]) is dict) \ .filter(lambda x: type(x[metadata_count+1]) is dict) \ .filter(lambda x: len(x[metadata_count])> int(feature_count_threshold) ) \ .cache() all_hashes_cnt_dic = None all_hash_str_dic = None all_hashes_seq_dic = None else: print "INFO: pattern_str=", pattern_str + "<--" print "INFO: ln_delimitor=", ln_delimitor + "<--" print "INFO: label_idx=", label_idx print "INFO: data_idx=", data_idx print "INFO: metadata_count=", metadata_count print "INFO: filter_ratio=", filter_ratio # filter top and least percentage of feature if not filter_ratio is None and filter_ratio > 0 and filter_ratio < 1: # check total count here before continue upper_cnt = total_input_count * (1 - filter_ratio) lower_cnt = total_input_count * filter_ratio # set limit for lower bound. if total count is large, lower_cnt may exclude all features... # max lower count = min( MAX_FILTER_LOWER_CNT, total_input_count/100 ) if not MAX_FILTER_LOWER_CNT is None and lower_cnt > MAX_FILTER_LOWER_CNT: if MAX_FILTER_LOWER_CNT > total_input_count / 100: lower_cnt = total_input_count / 100 else: lower_cnt = MAX_FILTER_LOWER_CNT print "INFO: filtering by count, upper bound=", upper_cnt, ",lower bound=", lower_cnt # find unique feature, count them, remove them if in highest and lowest % and then create a dict f_feat_set = Set (txt_rdd.map(lambda x:x.split(ln_delimitor)).flatMap(lambda x:Set(x[metadata_count:])) \ .map(lambda x:(x,1)).reduceByKey(lambda a, b: a + b) \ .filter(lambda x:x[1]<= upper_cnt and x[1]>= lower_cnt) \ .map(lambda x:x[0]).collect() ) print "INFO: f_feat_set len=", len(f_feat_set) broadcast_f_set = sc.broadcast(f_feat_set) #txt_rdd=txt_rdd.map(lambda x: filter_by_list(x, metadata_count,ln_delimitor, broadcast_f_list.value )) txt_rdd=txt_rdd.map(lambda x: x.split(ln_delimitor)) \ .map(lambda x: x[:metadata_count]+ [w for w in x[metadata_count:] if w and w in broadcast_f_set.value]) \ .map(lambda x: ln_delimitor.join(x)) # preprocess by pattern matching and then extract n-gram features #.encode('UTF8') # input txt_rdd format (string): meta-data1\tmeta-data2\t...\tdataline1\tdataline2\t...datalineN\n # output featured_rdd format (list):[meta-data1,meta-data2,..., hash_cnt_dic, hash_str_dic] # hash_cnt_dic: {hash,hash:count,...} hash_str_dic: {hash: 'str1',... } tmp_rdd = txt_rdd \ .map(lambda x: preprocess_pattern(x, metadata_count, pattern_str, ln_delimitor \ , label_idx, label_arr, convert2dirty )) \ .filter(lambda x: len(x) > metadata_count) \ .filter(lambda x: type(x[metadata_count]) is list) #.cache() memory issue... #tmp_rdd_count=tmp_rdd.count() #print "INFO: After preprocessing count=",tmp_rdd_count featured_rdd = tmp_rdd \ .map(lambda x: feature_extraction_ngram(x, data_idx, MAX_FEATURES, num_gram)) \ .filter(lambda x: len(x) > metadata_count) \ .filter(lambda x: type(x[metadata_count]) is dict) \ .filter(lambda x: type(x[metadata_count+1]) is dict) \ .filter(lambda x: len(x[metadata_count])> int(feature_count_threshold) ) \ .cache() #feat_rdd_count=featured_rdd.count() #print "INFO: After featuring count=",feat_rdd_count all_hashes_cnt_dic = None all_hash_str_dic = None all_hashes_seq_dic = None #get all hashes and total occurring count =============== # all_hashes_cnt_dic: {'hash,hash': total count,... } if all_hashes_cnt_dic is None: #all_hashes_cnt_dic = featured_rdd.map(lambda x: x[metadata_count]).reduce(lambda a, b: combine_dic_cnt(a, b)) all_hashes_cnt_dic = dict( featured_rdd.flatMap(lambda x: x[metadata_count].items()). reduceByKey(lambda a, b: a + b).collect()) #get all hashes and their extracted string =============== # all_hash_str_dic: {hash:'str1', ... if all_hash_str_dic is None: #all_hash_str_dic = featured_rdd.map(lambda x: x[metadata_count+1]).reduce(lambda a, b: combine_dic(a, b)) all_hash_str_dic = dict( featured_rdd.flatMap( lambda x: x[metadata_count + 1].items()).distinct().collect()) # get all labels into an array =============== provided by parameter? if label_arr is None: # will force "clean" be 0 here label_arr = sorted( featured_rdd.map( lambda x: x[label_idx].lower()).distinct().collect()) # debug only print "INFO: label_arr.=", json.dumps(sorted(label_arr)) # save labels to hdfs as text file==================================== ============ hdfs_folder = hdfs_feat_dir #+ "/" # "/" is needed to create the folder correctly print "INFO: hdfs_folder=", hdfs_folder try: hdfs.mkdir(hdfs_folder) except IOError as e: print "WARNING: I/O error({0}): {1}".format(e.errno, e.strerror) except: print "WARNING: Unexpected error at mkdir:", sys.exc_info()[0] # clean up metadata_file metadata_file = os.path.join(hdfs_folder, metadata) #"metadata" print "INFO: metadata_file=", metadata_file try: hdfs.rmr(metadata_file) except IOError as e: print "WARNING: I/O error({0}): {1}".format(e.errno, e.strerror) except: print "WARNING: Unexpected error at rmr():", sys.exc_info()[0] sc.parallelize(label_arr, 1).saveAsTextFile(metadata_file) #remap all hash values to continuous key/feature number ============== # all_hashes_seq_dic: { hash : sequential_numb } if all_hashes_seq_dic is None: all_hashes_seq_dic = {} remap2seq( all_hashes_cnt_dic, all_hashes_seq_dic) #all_hashes_seq_dic has continuous key number #print "all_hashes_seq_dic=",all_hashes_seq_dic total_feature_numb = len(all_hashes_seq_dic) print "INFO: Total feature count=", len(all_hashes_seq_dic) # featured_rdd (list): [meta-data1,meta-data2,..., hash_cnt_dic, hash_str_dic] # seq_featured_rdd(list): [meta-data1,meta-data2,..., hash_cnthsh_dict, hash_str_dic] (feat id in sorted sequence) # hash_cnt_dic: {hash: count} hash_str_dic: {hash: 'str1,str2...' } # set binary_flag to True, all feature:value will be 1 broadcast_dic = sc.broadcast(all_hashes_seq_dic) seq_featured_rdd = featured_rdd.map(lambda x: convert2seq( x, label_idx, data_idx, broadcast_dic.value, binary_flag=binary_flag) ).cache() # get hash_cnthsh_dict then flatMap and reduce to (feat id, count) ct_rdd = seq_featured_rdd.flatMap(lambda x: [(i[0], i[1]) for i in x[ data_idx].iteritems()]).reduceByKey(lambda a, b: a + b) # sorted by feature id as int feat_sample_count_arr = ct_rdd.sortBy(lambda x: int(x[0])).map( lambda x: x[1]).collect() # sort after collect may fail when rdd is huge #feat_sample_count_arr=[] #for i in sorted(ct_rdd.collect(), key=lambda t: int(t[0])): # feat_sample_count_arr.append(i[1]) print "INFO: feat_sample_count_arr len=", len(feat_sample_count_arr) # save feat_sample_count_arr data ==================================== ============ filter = '{"rid":' + row_id_str + ',"key":"feat_sample_count_arr"}' upsert_flag = True jo_insert = {} jo_insert["rid"] = eval(row_id_str) jo_insert["key"] = "feat_sample_count_arr" jo_insert["value"] = feat_sample_count_arr jstr_insert = json.dumps(jo_insert) ret = query_mongo.upsert_doc_t(mongo_tuples, filter, jstr_insert, upsert_flag) print "INFO: Upsert count for feat_sample_count_arr=", ret # insert failed, save to local if ret == 0: # drop old record in mongo ret = query_mongo.delete_many(mongo_tuples, None, filter) if not os.path.exists(local_out_dir): os.makedirs(local_out_dir) fsca_hs = os.path.join(local_out_dir, row_id_str, row_id_str + "_feat_sample_count_arr.pkl") print "WARNING: save feat_sample_count_arr to local" ml_util.ml_pickle_save(feat_sample_count_arr, fsca_hs) # save feature data; TBD. not used. ==================================== ============ #libsvm_rdd=seq_featured_rdd.map(lambda x: convert2libsvm(x,label_idx,data_idx,label_arr)) # put hash to the front of each row, assume hash is after label libsvm_rdd = seq_featured_rdd.map( lambda x: x[label_idx + 1] + " " + convert2libsvm( x, label_idx, data_idx, label_arr)) # debug only #print "libsvm_rdd=" #for i in libsvm_rdd.collect(): # print i # get rdd statistics info stats = featured_rdd.map(lambda p: len(p[metadata_count])).stats() feat_count_max = stats.max() feat_count_stdev = stats.stdev() feat_count_mean = stats.mean() sample_count = stats.count() print "INFO: libsvm data: sample count=", sample_count, ",Feat count mean=", feat_count_mean, ",Stdev=", feat_count_stdev print "INFO: ,max feature count=", feat_count_max # find sample count lbl_arr = featured_rdd.map(lambda x: (x[label_idx], 1)).reduceByKey( add).collect() print "INFO: Sample count by label=", lbl_arr # remove duplicated libsvm string; only keep the first duplicated item, assume space following key_idx if remove_duplicated == "Y": libsvm_rdd=libsvm_rdd \ .map(lambda x: ( ','.join(x.split(' ')[metadata_count:]), x)) \ .groupByKey().map(lambda x: list(x[1])[0] ) \ .cache() cnt_list = libsvm_rdd.map(lambda x: (x.split(' ')[1], 1)).reduceByKey( add).collect() stats = libsvm_rdd.map( lambda x: len(x.split(' ')[metadata_count:])).stats() feat_count_max = stats.max() feat_count_stdev = stats.stdev() feat_count_mean = stats.mean() sample_count = stats.count() print "INFO: Non-Duplicated libsvm data: sample count=", sample_count, ",Feat count mean=", feat_count_mean, ",Stdev=", feat_count_stdev print "INFO: ,max feature count=", feat_count_max print "INFO: Non-Duplicated Label count list=", cnt_list # clean up libsvm data ==================================== ============ libsvm_data_file = os.path.join(hdfs_folder, libsvm_alldata_filename) #"libsvm_data" print "INFO: libsvm_data_file=", libsvm_data_file try: #hdfs.ls(save_dir) #print "find hdfs folder" hdfs.rmr(libsvm_data_file) #if num_gram == 1: # hdfs.rmr(dnn_data_file) #print "all files removed" except IOError as e: print "WARNING: I/O error({0}): {1} at libsvm_data_file clean up".format( e.errno, e.strerror) except: print "WARNING: Unexpected error at libsvm file clean up:", sys.exc_info( )[0] #codec = "org.apache.hadoop.io.compress.GzipCodec" #libsvm_rdd.saveAsTextFile(libsvm_data_file, codec) libsvm_rdd.saveAsTextFile(libsvm_data_file) # TBD encrypted feat_count_file = libsvm_data_file + "_feat_count" print "INFO: feat_count_file=", feat_count_file try: hdfs.rmr(feat_count_file) except IOError as e: print "WARNING: I/O error({0}): {1} at feat_count clean up".format( e.errno, e.strerror) except: print "WARNING: Unexpected error at libsvm feature count clean up:", sys.exc_info( )[0] sc.parallelize([total_feature_numb], 1).saveAsTextFile(feat_count_file) label_dic = {} # assign label a number for idx, label in enumerate(sorted(label_arr)): if not label in label_dic: label_dic[ label] = idx #starting from 0, value = idx, e.g., clean:0, dirty:1 # output text for DNN:[meta-data1,meta-data2,..., [feature tokens]] ================= DNN =========== if num_gram == 1: # special flag to tokenize and keep input orders print "INFO: processing data for DNN..." # create token dict # str_hash_dict: string to hash # all_hashes_seq_dic: hash to seq id if token_dict is None or len(token_dict) == 0: token_dict = {} str_hash_dict = {v: k for k, v in all_hash_str_dic.iteritems()} for k, v in str_hash_dict.iteritems(): token_dict[k] = int(all_hashes_seq_dic[str(v)]) #print "token_dict=",len(token_dict),token_dict dnn_rdd = tmp_rdd \ .map(lambda x: tokenize_by_dict(x, data_idx, token_dict,label_idx, label_dic)) \ .filter(lambda x: len(x) > metadata_count) \ .filter(lambda x: type(x[metadata_count]) is list) #.cache() # filter duplication here #print dnn_rdd.take(3) dnn_data_file = os.path.join(hdfs_folder, dnn_alldata_filename) #"dnn_data" print "INFO: dnn_data_file=", dnn_data_file try: hdfs.rmr(dnn_data_file) except IOError as e: print "WARNING: I/O error({0}): {1} at dnn_data_file clean up".format( e.errno, e.strerror) except: print "WARNING: Unexpected error at libsvm file clean up:", sys.exc_info( )[0] # clean up data dnn_npy_gz_file = os.path.join(hdfs_folder, row_id_str + "_dnn_") print "INFO: dnn_npy_gz_file=", dnn_npy_gz_file try: hdfs.rmr(dnn_npy_gz_file + "data.npy.gz") hdfs.rmr(dnn_npy_gz_file + "label.npy.gz") hdfs.rmr(dnn_npy_gz_file + "info.npy.gz") except IOError as e: print "WARNING: I/O error({0}): {1} at dnn_npy clean up".format( e.errno, e.strerror) except: print "WARNING: Unexpected error at dnn_npy file clean up:", sys.exc_info( )[0] # save new data try: dnn_rdd.saveAsTextFile(dnn_data_file) except: print "WARNING: Unexpected error at saving dnn data:", sys.exc_info( )[0] # show data statistics try: stats = dnn_rdd.map(lambda p: len(p[metadata_count])).stats() feat_count_max = stats.max() feat_count_stdev = stats.stdev() feat_count_mean = stats.mean() sample_count = stats.count() print "INFO: DNN data: sample count=", sample_count, ",Feat count mean=", feat_count_mean, ",Stdev=", feat_count_stdev print "INFO: ,max feature count=", feat_count_max except: print "WARNING: Unexpected error at getting stats of dnn_rdd:", sys.exc_info( )[0] # clean up pca data in hdfs ============ ======================== pca_files = '*' + libsvm_alldata_filename + "_pca_*" #print "INFO: pca_files=", pca_files try: f_list = hdfs.ls(hdfs_folder) if len(f_list) > 0: df_list = fnmatch.filter(f_list, pca_files) for f in df_list: print "INFO: rm ", f hdfs.rmr(f) except IOError as e: print "WARNING: I/O error({0}): {1}".format(e.errno, e.strerror) except: print "WARNING: Unexpected error at libsvm pca file clean up:", sys.exc_info( )[0] # clean up pca data in web local ============ ======================== pca_fname = os.path.join(model_data_folder, row_id_str + '_pca_*.pkl*') print "INFO: pca_fname=", pca_fname try: for fl in glob.glob(pca_fname): print "INFO: remove ", fl os.remove(fl) except OSError, e: print("Error: %s - %s." % (e.pca_fname, e.strerror))