예제 #1
0
파일: states.py 프로젝트: maij/qutip
def spin_coherent(j, theta, phi, type='ket'):
    r"""Generate the coherent spin state :math:`\lvert \theta, \phi\rangle`.

    Parameters
    ----------
    j : float
        The spin of the state.

    theta : float
        Angle from z axis.

    phi : float
        Angle from x axis.

    type : string {'ket', 'bra', 'dm'}
        Type of state to generate.

    Returns
    -------
    state : qobj
        Qobj quantum object for spin coherent state
    """
    Sp = jmat(j, '+')
    Sm = jmat(j, '-')
    psi = (0.5 * theta * np.exp(1j * phi) * Sm -
           0.5 * theta * np.exp(-1j * phi) * Sp).expm() * spin_state(j, j)

    if type == 'ket':
        return psi
    elif type == 'bra':
        return psi.dag()
    elif type == 'dm':
        return ket2dm(psi)
    else:
        raise ValueError("invalid value keyword argument 'type'")
예제 #2
0
def rand_super(dim=5):
    H = rand_herm(dim)
    return propagator(
        H, np.random.rand(),
        [create(dim),
         destroy(dim),
         jmat(float(dim - 1) / 2.0, 'z')])
예제 #3
0
def rand_super(N=5, dims=None):
    """
    Returns a randomly drawn superoperator acting on operators acting on
    N dimensions.

    Parameters
    ----------
    N : int
        Square root of the dimension of the superoperator to be returned.
    dims : list
        Dimensions of quantum object.  Used for specifying
        tensor structure. Default is dims=[[[N],[N]], [[N],[N]]].
    """
    if dims is not None:
        # TODO: check!
        pass
    else:
        dims = [[[N], [N]], [[N], [N]]]
    H = rand_herm(N)
    S = propagator(
        H, np.random.rand(),
        [create(N), destroy(N),
         jmat(float(N - 1) / 2.0, 'z')])
    S.dims = dims
    return S
예제 #4
0
def stochastic_noise_Yue(rho, t, normalization, hbar, gamma):
    temp = jmat(1)
    sum = 0
    for i in range(0, 3):
        j = temp[i].full()
        sum += commutator(j, commutator(j, rho))

    return -gamma / 2 * sum
예제 #5
0
 def test_SuperChoiSuper(self):
     """
     Superoperator: Converting superoperator to Choi matrix and back.
     """
     h_5 = rand_herm(5)
     superoperator = propagator(h_5, scipy.rand(),
                                [create(5), destroy(5), jmat(2, 'z')])
     choi_matrix = super_to_choi(superoperator)
     test_supe = choi_to_super(choi_matrix)
     assert_((test_supe - superoperator).norm() < 1e-12)
예제 #6
0
 def test_ChoiKrausChoi(self):
     """
     Superoperator: Converting superoperator to Choi matrix and back.
     """
     h_5 = rand_herm(5)
     superoperator = propagator(h_5, scipy.rand(),
                                [create(5), destroy(5), jmat(2, 'z')])
     choi_matrix = super_to_choi(superoperator)
     kraus_ops = choi_to_kraus(choi_matrix)
     test_choi = kraus_to_choi(kraus_ops)
     assert_((test_choi - choi_matrix).norm() < 1e-12)
예제 #7
0
 def test_SuperChoiSuper(self):
     """
     Superoperator: Converting superoperator to Choi matrix and back.
     """
     h_5 = rand_herm(5)
     superoperator = propagator(
         h_5, scipy.rand(),
         [create(5), destroy(5), jmat(2, 'z')])
     choi_matrix = super_to_choi(superoperator)
     test_supe = choi_to_super(choi_matrix)
     assert_((test_supe - superoperator).norm() < 1e-12)
예제 #8
0
 def test_ChoiKrausChoi(self):
     """
     Superoperator: Converting superoperator to Choi matrix and back.
     """
     h_5 = rand_herm(5)
     superoperator = propagator(
         h_5, scipy.rand(),
         [create(5), destroy(5), jmat(2, 'z')])
     choi_matrix = super_to_choi(superoperator)
     kraus_ops = choi_to_kraus(choi_matrix)
     test_choi = kraus_to_choi(kraus_ops)
     assert_((test_choi - choi_matrix).norm() < 1e-12)
예제 #9
0
파일: states.py 프로젝트: nwlambert/qutip
def spin_coherent(j, theta, phi, type='ket'):
    """Generates the spin state |j, m>, i.e.  the eigenstate
    of the spin-j Sz operator with eigenvalue m.

    Parameters
    ----------
    j : float
        The spin of the state.

    theta : float
        Angle from z axis.

    phi : float
        Angle from x axis.

    type : string {'ket', 'bra', 'dm'}
        Type of state to generate.

    Returns
    -------
    state : qobj
        Qobj quantum object for spin coherent state

    """
    Sp = jmat(j, '+')
    Sm = jmat(j, '-')
    psi = (0.5 * theta * np.exp(1j * phi) * Sm -
           0.5 * theta * np.exp(-1j * phi) * Sp).expm() * spin_state(j, j)

    if type == 'ket':
        return psi
    elif type == 'bra':
        return psi.dag()
    elif type == 'dm':
        return ket2dm(psi)
    else:
        raise ValueError("invalid value keyword argument 'type'")
예제 #10
0
    def _init_operators(self):
        # lc resonator creation operator
        self.Aplus = tensor(create(self.nmax), qeye(self.fock_space_size))
        # annihilation operators
        self.Aminus = tensor(destroy(self.nmax), qeye(self.fock_space_size))

        self.sigmax = operators.jmat((self.fock_space_size - 1) / 2, 'x') * 2
        self.sigmaz = operators.jmat((self.fock_space_size - 1) / 2, 'z') * 2
        self.sigmap = operators.jmat((self.fock_space_size - 1) / 2, '+')
        self.sigmam = operators.jmat((self.fock_space_size - 1) / 2, '-')

        # pauli sigma matrix at x direction
        self.SigmaX = tensor(qeye(self.nmax), self.sigmax)
        # pauli sigma matrix at z direction
        self.SigmaZ = tensor(qeye(self.nmax), self.sigmaz)
        # creation operator
        self.SigmaP = tensor(qeye(self.nmax), self.sigmap)
        # annihilation operator
        self.SigmaN = tensor(qeye(self.nmax), self.sigmam)
        # particle number operator
        self.SigmaPopulation = tensor(qeye(self.nmax),
                                      self.sigmap * self.sigmam)
        self.Qeye = self.SigmaN = tensor(qeye(self.nmax),
                                         qeye(self.fock_space_size))
예제 #11
0
def rand_super(N=5, dims=None):
    """
    Returns a randomly drawn superoperator acting on operators acting on
    N dimensions.

    Parameters
    ----------
    N : int
        Square root of the dimension of the superoperator to be returned.
    dims : list
        Dimensions of quantum object.  Used for specifying
        tensor structure. Default is dims=[[[N],[N]], [[N],[N]]].
    """
    if dims is not None:
        # TODO: check!
        pass
    else:
        dims = [[[N], [N]], [[N], [N]]]
    H = rand_herm(N)
    S = propagator(H, np.random.rand(), [create(N), destroy(N), jmat(float(N - 1) / 2.0, "z")])
    S.dims = dims
    return S
예제 #12
0
 def rand_super(self):
     h_5 = rand_herm(5)
     return propagator(
         h_5, scipy.rand(),
         [create(5), destroy(5), jmat(2, 'z')])
예제 #13
0
def _rotation_matrix(theta, phi, j):
    """Private function to calculate the rotation operator for the SU2 kernel.
    """
    return la.expm(1j * phi * jmat(j, 'z').full()) @ \
           la.expm(1j * theta * jmat(j, 'y').full())
예제 #14
0
파일: wigner.py 프로젝트: qutip/qutip
def _rotation_matrix(theta, phi, j):
    """Private function to calculate the rotation operator for the SU2 kernel.
    """
    return la.expm(1j * phi * jmat(j, 'z').full()) @ \
           la.expm(1j * theta * jmat(j, 'y').full())
예제 #15
0
def rand_super():
    h_5 = rand_herm(5)
    return propagator(h_5, scipy.rand(), [
        create(5), destroy(5), jmat(2, 'z')
    ])
예제 #16
0
def rand_super(dim=5):
    H = rand_herm(dim)
    return propagator(H, np.random.rand(), [
        create(dim), destroy(dim), jmat(float(dim - 1) / 2.0, 'z')
    ])