def TestPulseConstructor(): """ Test for creating empty Pulse, Pulse with constant coefficients etc. """ coeff = np.array([0.1, 0.2, 0.3, 0.4]) tlist = np.array([0., 1., 2., 3.]) ham = sigmaz() # Special ways of initializing pulse pulse2 = Pulse(sigmax(), 0, tlist, True) assert_allclose(pulse2.get_ideal_qobjevo(2).ops[0].qobj, tensor(sigmax(), identity(2))) pulse3 = Pulse(sigmay(), 0) assert_allclose(pulse3.get_ideal_qobjevo(2).cte.norm(), 0.) pulse4 = Pulse(None, None) # Dummy empty ham assert_allclose(pulse4.get_ideal_qobjevo(2).cte.norm(), 0.) tlist_noise = np.array([1., 2.5, 3.]) coeff_noise = np.array([0.5, 0.1, 0.5]) tlist_noise2 = np.array([0.5, 2, 3.]) coeff_noise2 = np.array([0.1, 0.2, 0.3]) # Pulse with different dims random_qobj = Qobj(np.random.random((3, 3))) pulse5 = Pulse(sigmaz(), 1, tlist, True) pulse5.add_coherent_noise(sigmay(), 1, tlist_noise, coeff_noise) pulse5.add_lindblad_noise( random_qobj, 0, tlist=tlist_noise2, coeff=coeff_noise2) qu, c_ops = pulse5.get_noisy_qobjevo(dims=[3, 2]) assert_allclose(qu.ops[0].qobj, tensor([identity(3), sigmaz()])) assert_allclose(qu.ops[1].qobj, tensor([identity(3), sigmay()])) assert_allclose(c_ops[0].ops[0].qobj, tensor([random_qobj, identity(2)]))
def TestBasicPulse(): """ Test for basic pulse generation and attributes. """ coeff = np.array([0.1, 0.2, 0.3, 0.4]) tlist = np.array([0., 1., 2., 3.]) ham = sigmaz() # Basic tests pulse1 = Pulse(ham, 1, tlist, coeff) assert_allclose( pulse1.get_ideal_qobjevo(2).ops[0].qobj, tensor(identity(2), sigmaz())) pulse1.tlist = 2 * tlist assert_allclose(pulse1.tlist, 2 * tlist) pulse1.tlist = tlist pulse1.coeff = 2 * coeff assert_allclose(pulse1.coeff, 2 * coeff) pulse1.coeff = coeff pulse1.qobj = 2 * sigmay() assert_allclose(pulse1.qobj, 2 * sigmay()) pulse1.qobj = ham pulse1.targets = 3 assert_allclose(pulse1.targets, 3) pulse1.targets = 1 assert_allclose(pulse1.get_ideal_qobj(2), tensor(identity(2), sigmaz()))
def TestCoherentNoise(): """ Test for pulse genration with coherent noise. """ coeff = np.array([0.1, 0.2, 0.3, 0.4]) tlist = np.array([0., 1., 2., 3.]) ham = sigmaz() pulse1 = Pulse(ham, 1, tlist, coeff) # Add coherent noise with the same tlist pulse1.add_coherent_noise(sigmay(), 0, tlist, coeff) assert_allclose( pulse1.get_ideal_qobjevo(2).ops[0].qobj, tensor(identity(2), sigmaz())) assert_(len(pulse1.coherent_noise) == 1) noise_qu, c_ops = pulse1.get_noisy_qobjevo(2) assert_allclose(c_ops, []) assert_allclose(noise_qu.tlist, np.array([0., 1., 2., 3.])) qobj_list = [ele.qobj for ele in noise_qu.ops] assert_(tensor(identity(2), sigmaz()) in qobj_list) assert_(tensor(sigmay(), identity(2)) in qobj_list) for ele in noise_qu.ops: assert_allclose(ele.coeff, coeff)
def TestNoisyPulse(): """ Test for lindblad noise and different tlist """ coeff = np.array([0.1, 0.2, 0.3, 0.4]) tlist = np.array([0., 1., 2., 3.]) ham = sigmaz() pulse1 = Pulse(ham, 1, tlist, coeff) # Add coherent noise and lindblad noise with different tlist pulse1.spline_kind = "step_func" tlist_noise = np.array([1., 2.5, 3.]) coeff_noise = np.array([0.5, 0.1, 0.5]) pulse1.add_coherent_noise(sigmay(), 0, tlist_noise, coeff_noise) tlist_noise2 = np.array([0.5, 2, 3.]) coeff_noise2 = np.array([0.1, 0.2, 0.3]) pulse1.add_lindblad_noise(sigmax(), 1, coeff=True) pulse1.add_lindblad_noise( sigmax(), 0, tlist=tlist_noise2, coeff=coeff_noise2) assert_allclose( pulse1.get_ideal_qobjevo(2).ops[0].qobj, tensor(identity(2), sigmaz())) noise_qu, c_ops = pulse1.get_noisy_qobjevo(2) assert_allclose(noise_qu.tlist, np.array([0., 0.5, 1., 2., 2.5, 3.])) for ele in noise_qu.ops: if ele.qobj == tensor(identity(2), sigmaz()): assert_allclose( ele.coeff, np.array([0.1, 0.1, 0.2, 0.3, 0.3, 0.4])) elif ele.qobj == tensor(sigmay(), identity(2)): assert_allclose( ele.coeff, np.array([0., 0., 0.5, 0.5, 0.1, 0.5])) for c_op in c_ops: if len(c_op.ops) == 0: assert_allclose(c_ops[0].cte, tensor(identity(2), sigmax())) else: assert_allclose( c_ops[1].ops[0].qobj, tensor(sigmax(), identity(2))) assert_allclose( c_ops[1].tlist, np.array([0., 0.5, 1., 2., 2.5, 3.])) assert_allclose( c_ops[1].ops[0].coeff, np.array([0., 0.1, 0.1, 0.2, 0.2, 0.3]))