예제 #1
0
def fidelity(A, B):
    """
    Calculates the fidelity (pseudo-metric) between two density matrices.
    See: Nielsen & Chuang, "Quantum Computation and Quantum Information"

    Parameters
    ----------
    A : qobj
        Density matrix or state vector.
    B : qobj
        Density matrix or state vector with same dimensions as A.

    Returns
    -------
    fid : float
        Fidelity pseudo-metric between A and B.

    Examples
    --------
    >>> x = fock_dm(5,3)
    >>> y = coherent_dm(5,1)
    >>> fidelity(x,y)
    0.24104350624628332

    """
    if A.isket or A.isbra:
        A = ket2dm(A)
    if B.isket or B.isbra:
        B = ket2dm(B)

    if A.dims != B.dims:
        raise TypeError('Density matrices do not have same dimensions.')

    A = A.sqrtm()
    return float(np.real((A * (B * A)).sqrtm().tr()))
예제 #2
0
파일: metrics.py 프로젝트: trxw/qutip
def fidelity(A, B):
    """
    Calculates the fidelity (pseudo-metric) between two density matrices..
    See: Nielsen & Chuang, "Quantum Computation and Quantum Information"

    Parameters
    ----------
    A : qobj
        Density matrix or state vector.
    B : qobj
        Density matrix or state vector with same dimensions as A.

    Returns
    -------
    fid : float
        Fidelity pseudo-metric between A and B.

    Examples
    --------
    >>> x=fock_dm(5,3)
    >>> y=coherent_dm(5,1)
    >>> fidelity(x,y)
    0.24104350624628332

    """
    if A.type != 'oper':
        A = ket2dm(A)
    if B.type != 'oper':
        B = ket2dm(B)
    if A.dims != B.dims:
        raise TypeError('Density matrices do not have same dimensions.')
    else:
        A = A.sqrtm()
        return float(np.real((A * (B * A)).sqrtm().tr()))
예제 #3
0
파일: metrics.py 프로젝트: heeres/qutip
def hilbert_dist(A, B):
    """
    Returns the Hilbert-Schmidt distance between two density matrices A & B.

    Parameters
    ----------
    A : qobj
        Density matrix or state vector.
    B : qobj
        Density matrix or state vector with same dimensions as A.

    Returns
    -------
    dist : float
        Hilbert-Schmidt distance between density matrices.

    """
    if A.isket or A.isbra:
        A = ket2dm(A)
    if B.isket or B.isbra:
        B = ket2dm(B)

    if A.dims != B.dims:
        raise TypeError('A and B do not have same dimensions.')

    return (A - B).norm('fro')
예제 #4
0
def bures_angle(A, B):
    """
    Returns the Bures Angle between two density matrices A & B.

    The Bures angle ranges from 0, for states with unit fidelity, to pi/2.

    Parameters
    ----------
    A : qobj
        Density matrix or state vector.
    B : qobj
        Density matrix or state vector with same dimensions as A.

    Returns
    -------
    angle : float
        Bures angle between density matrices.
    """
    if A.isket or A.isbra:
        A = ket2dm(A)
    if B.isket or B.isbra:
        B = ket2dm(B)

    if A.dims != B.dims:
        raise TypeError('A and B do not have same dimensions.')

    return np.arccos(fidelity(A, B))
예제 #5
0
def hilbert_dist(A, B):
    """
    Returns the Hilbert-Schmidt distance between two density matrices A & B.

    Parameters
    ----------
    A : qobj
        Density matrix or state vector.
    B : qobj
        Density matrix or state vector with same dimensions as A.

    Returns
    -------
    dist : float
        Hilbert-Schmidt distance between density matrices.

    Notes
    -----
    See V. Vedral and M. B. Plenio, Phys. Rev. A 57, 1619 (1998).

    """
    if A.isket or A.isbra:
        A = ket2dm(A)
    if B.isket or B.isbra:
        B = ket2dm(B)

    if A.dims != B.dims:
        raise TypeError('A and B do not have same dimensions.')

    return ((A - B)**2).tr()
예제 #6
0
def bures_dist(A, B):
    """
    Returns the Bures distance between two density matrices A & B.

    The Bures distance ranges from 0, for states with unit fidelity,
    to sqrt(2).

    Parameters
    ----------
    A : qobj
        Density matrix or state vector.
    B : qobj
        Density matrix or state vector with same dimensions as A.

    Returns
    -------
    dist : float
        Bures distance between density matrices.
    """
    if A.isket or A.isbra:
        A = ket2dm(A)
    if B.isket or B.isbra:
        B = ket2dm(B)

    if A.dims != B.dims:
        raise TypeError('A and B do not have same dimensions.')

    dist = np.sqrt(2.0 * (1.0 - fidelity(A, B)))
    return dist
예제 #7
0
def hilbert_dist(A, B):
    """
    Returns the Hilbert-Schmidt distance between two density matrices A & B.

    Parameters
    ----------
    A : qobj
        Density matrix or state vector.
    B : qobj
        Density matrix or state vector with same dimensions as A.

    Returns
    -------
    dist : float
        Hilbert-Schmidt distance between density matrices.

    Notes
    -----
    See V. Vedral and M. B. Plenio, Phys. Rev. A 57, 1619 (1998).

    """
    if A.isket or A.isbra:
        A = ket2dm(A)
    if B.isket or B.isbra:
        B = ket2dm(B)

    if A.dims != B.dims:
        raise TypeError('A and B do not have same dimensions.')

    return ((A - B)**2).tr()
예제 #8
0
def bures_dist(A, B):
    """
    Returns the Bures distance between two density matrices A & B.

    The Bures distance ranges from 0, for states with unit fidelity,
    to sqrt(2).

    Parameters
    ----------
    A : qobj
        Density matrix or state vector.
    B : qobj
        Density matrix or state vector with same dimensions as A.

    Returns
    -------
    dist : float
        Bures distance between density matrices.
    """
    if A.isket or A.isbra:
        A = ket2dm(A)
    if B.isket or B.isbra:
        B = ket2dm(B)

    if A.dims != B.dims:
        raise TypeError('A and B do not have same dimensions.')

    dist = np.sqrt(2.0 * (1.0 - fidelity(A, B)))
    return dist
예제 #9
0
def bures_angle(A, B):
    """
    Returns the Bures Angle between two density matrices A & B.

    The Bures angle ranges from 0, for states with unit fidelity, to pi/2.

    Parameters
    ----------
    A : qobj
        Density matrix or state vector.
    B : qobj
        Density matrix or state vector with same dimensions as A.

    Returns
    -------
    angle : float
        Bures angle between density matrices.
    """
    if A.isket or A.isbra:
        A = ket2dm(A)
    if B.isket or B.isbra:
        B = ket2dm(B)

    if A.dims != B.dims:
        raise TypeError('A and B do not have same dimensions.')

    return np.arccos(fidelity(A, B))
예제 #10
0
파일: metrics.py 프로젝트: phaethon42/qutip
def hilbert_dist(A, B):
    """
    Returns the Hilbert-Schmidt distance between two density matrices A & B.

    Parameters
    ----------
    A : qobj
        Density matrix or state vector.
    B : qobj
        Density matrix or state vector with same dimensions as A.

    Returns
    -------
    dist : float
        Hilbert-Schmidt distance between density matrices.

    """
    if A.isket or A.isbra:
        A = ket2dm(A)
    if B.isket or B.isbra:
        B = ket2dm(B)

    if A.dims != B.dims:
        raise TypeError('A and B do not have same dimensions.')

    return (A - B).norm('fro')
예제 #11
0
def hellinger_dist(A, B, sparse=False, tol=0):
    """
    Calculates the quantum Hellinger distance between two density matrices.

    Formula:
    hellinger_dist(A, B) = sqrt(2-2*Tr(sqrt(A)*sqrt(B)))

    See: D. Spehner, F. Illuminati, M. Orszag, and W. Roga, "Geometric
    measures of quantum correlations with Bures and Hellinger distances"
    arXiv:1611.03449

    Parameters
    ----------
    A : :class:`qutip.Qobj`
        Density matrix or state vector.
    B : :class:`qutip.Qobj`
        Density matrix or state vector with same dimensions as A.
    tol : float
        Tolerance used by sparse eigensolver, if used. (0=Machine precision)
    sparse : {False, True}
        Use sparse eigensolver.

    Returns
    -------
    hellinger_dist : float
        Quantum Hellinger distance between A and B. Ranges from 0 to sqrt(2).

    Examples
    --------
    >>> x=fock_dm(5,3)
    >>> y=coherent_dm(5,1)
    >>> hellinger_dist(x,y)
    1.3725145002591095

    """
    if A.dims != B.dims:
        raise TypeError("A and B do not have same dimensions.")

    if A.isket or A.isbra:
        sqrtmA = ket2dm(A)
    else:
        sqrtmA = A.sqrtm(sparse=sparse, tol=tol)
    if B.isket or B.isbra:
        sqrtmB = ket2dm(B)
    else:
        sqrtmB = B.sqrtm(sparse=sparse, tol=tol)

    product = sqrtmA * sqrtmB

    eigs = sp_eigs(product.data,
                   isherm=product.isherm,
                   vecs=False,
                   sparse=sparse,
                   tol=tol)
    #np.maximum() is to avoid nan appearing sometimes due to numerical
    #instabilities causing np.sum(eigs) slightly (~1e-8) larger than 1
    #when hellinger_dist(A, B) is called for A=B
    return np.sqrt(2.0 * np.maximum(0., (1.0 - np.real(np.sum(eigs)))))
예제 #12
0
def fidelity(A, B):
    """
    Calculates the fidelity (pseudo-metric) between two density matrices.
    See: Nielsen & Chuang, "Quantum Computation and Quantum Information"

    Parameters
    ----------
    A : qobj
        Density matrix or state vector.
    B : qobj
        Density matrix or state vector with same dimensions as A.

    Returns
    -------
    fid : float
        Fidelity pseudo-metric between A and B.

    Examples
    --------
    >>> x = fock_dm(5,3)
    >>> y = coherent_dm(5,1)
    >>> fidelity(x,y)
    0.24104350624628332

    """
    if A.isket or A.isbra:
        # Take advantage of the fact that the density operator for A
        # is a projector to avoid a sqrtm call.
        sqrtmA = ket2dm(A)
        # Check whether we have to turn B into a density operator, too.
        if B.isket or B.isbra:
            B = ket2dm(B)
    else:
        if B.isket or B.isbra:
            # Swap the order so that we can take a more numerically
            # stable square root of B.
            return fidelity(B, A)
        # If we made it here, both A and B are operators, so
        # we have to take the sqrtm of one of them.
        sqrtmA = A.sqrtm()

    if sqrtmA.dims != B.dims:
        raise TypeError('Density matrices do not have same dimensions.')

    # We don't actually need the whole matrix here, just the trace
    # of its square root, so let's just get its eigenenergies instead.
    # We also truncate negative eigenvalues to avoid nan propagation;
    # even for positive semidefinite matrices, small negative eigenvalues
    # can be reported.
    eig_vals = (sqrtmA * B * sqrtmA).eigenenergies()
    return float(np.real(np.sqrt(eig_vals[eig_vals > 0]).sum()))
예제 #13
0
파일: metrics.py 프로젝트: PhilipVinc/qutip
def fidelity(A, B):
    """
    Calculates the fidelity (pseudo-metric) between two density matrices.
    See: Nielsen & Chuang, "Quantum Computation and Quantum Information"

    Parameters
    ----------
    A : qobj
        Density matrix or state vector.
    B : qobj
        Density matrix or state vector with same dimensions as A.

    Returns
    -------
    fid : float
        Fidelity pseudo-metric between A and B.

    Examples
    --------
    >>> x = fock_dm(5,3)
    >>> y = coherent_dm(5,1)
    >>> fidelity(x,y)
    0.24104350624628332

    """
    if A.isket or A.isbra:
        # Take advantage of the fact that the density operator for A
        # is a projector to avoid a sqrtm call.
        sqrtmA = ket2dm(A)
        # Check whether we have to turn B into a density operator, too.
        if B.isket or B.isbra:
            B = ket2dm(B)
    else:
        if B.isket or B.isbra:
            # Swap the order so that we can take a more numerically
            # stable square root of B.
            return fidelity(B, A)
        # If we made it here, both A and B are operators, so
        # we have to take the sqrtm of one of them.
        sqrtmA = A.sqrtm()

    if sqrtmA.dims != B.dims:
        raise TypeError('Density matrices do not have same dimensions.')

    # We don't actually need the whole matrix here, just the trace
    # of its square root, so let's just get its eigenenergies instead.
    # We also truncate negative eigenvalues to avoid nan propagation;
    # even for positive semidefinite matrices, small negative eigenvalues
    # can be reported.
    eig_vals = (sqrtmA * B * sqrtmA).eigenenergies()
    return float(np.real(np.sqrt(eig_vals[eig_vals > 0]).sum()))
예제 #14
0
파일: test_qobj.py 프로젝트: xinwang1/qutip
def test_QobjPurity():
    "Tests the purity method of `Qobj`"
    psi = basis(2, 1)
    # check purity of pure ket state
    assert_almost_equal(psi.purity(), 1)
    # check purity of pure ket state (superposition)
    psi2 = basis(2, 0)
    psi_tot = (psi+psi2).unit() 
    assert_almost_equal(psi_tot.purity(), 1)
    # check purity of density matrix of pure state 
    assert_almost_equal(ket2dm(psi_tot).purity(), 1)
    # check purity of maximally mixed density matrix
    rho_mixed = (ket2dm(psi)+ket2dm(psi2)).unit() 
    assert_almost_equal(rho_mixed.purity(), 0.5)
예제 #15
0
def _correlation_me_4op_2t(H, rho0, tlist, taulist, c_ops,
                           a_op, b_op, c_op, d_op, reverse=False,
                           args=None, options=Odeoptions()):
    """
    Calculate the four-operator two-time correlation function on the form
    <A(t)B(t+tau)C(t+tau)D(t)>.

    See, Gardiner, Quantum Noise, Section 5.2.1
    """

    if debug:
        print(inspect.stack()[0][3])

    if rho0 is None:
        rho0 = steadystate(H, c_ops)
    elif rho0 and isket(rho0):
        rho0 = ket2dm(rho0)

    C_mat = np.zeros([np.size(tlist), np.size(taulist)], dtype=complex)

    rho_t = mesolve(
        H, rho0, tlist, c_ops, [], args=args, options=options).states

    for t_idx, rho in enumerate(rho_t):
        C_mat[t_idx, :] = mesolve(H, d_op * rho * a_op, taulist,
                                  c_ops, [b_op * c_op],
                                  args=args, options=options).expect[0]

    return C_mat
예제 #16
0
파일: test_qobj.py 프로젝트: arnelg/qutip
def test_call():
    """
    Test Qobj: Call
    """
    # Make test objects.
    psi = rand_ket(3)
    rho = rand_dm_ginibre(3)
    U = rand_unitary(3)
    S = rand_super_bcsz(3)

    # Case 0: oper(ket).
    assert U(psi) == U * psi

    # Case 1: oper(oper). Should raise TypeError.
    with expect_exception(TypeError):
        U(rho)

    # Case 2: super(ket).
    assert S(psi) == vector_to_operator(S * operator_to_vector(ket2dm(psi)))

    # Case 3: super(oper).
    assert S(rho) == vector_to_operator(S * operator_to_vector(rho))

    # Case 4: super(super). Should raise TypeError.
    with expect_exception(TypeError):
        S(S)
예제 #17
0
def _correlation_es_2op_1t(H,
                           rho0,
                           tlist,
                           c_ops,
                           a_op,
                           b_op,
                           reverse=False,
                           args=None,
                           options=Odeoptions()):
    """
    Internal function for calculating correlation functions using the
    exponential series solver. See :func:`correlation_ss` usage.
    """

    if debug:
        print(inspect.stack()[0][3])

    # contruct the Liouvillian
    L = liouvillian(H, c_ops)

    # find the steady state
    if rho0 is None:
        rho0 = steadystate(L)
    elif rho0 and isket(rho0):
        rho0 = ket2dm(rho0)

    # evaluate the correlation function
    if reverse:
        # <A(t)B(t+tau)>
        solC_tau = ode2es(L, rho0 * a_op)
        return esval(expect(b_op, solC_tau), tlist)
    else:
        # default: <A(t+tau)B(t)>
        solC_tau = ode2es(L, b_op * rho0)
        return esval(expect(a_op, solC_tau), tlist)
예제 #18
0
def _correlation_me_4op_1t(H,
                           rho0,
                           tlist,
                           c_ops,
                           a_op,
                           b_op,
                           c_op,
                           d_op,
                           args=None,
                           options=Odeoptions()):
    """
    Calculate the four-operator two-time correlation function on the form
    <A(0)B(tau)C(tau)D(0)>.

    See, Gardiner, Quantum Noise, Section 5.2.1
    """

    if debug:
        print(inspect.stack()[0][3])

    if rho0 is None:
        rho0 = steadystate(H, c_ops)
    elif rho0 and isket(rho0):
        rho0 = ket2dm(rho0)

    return mesolve(H,
                   d_op * rho0 * a_op,
                   tlist,
                   c_ops, [b_op * c_op],
                   args=args,
                   options=options).expect[0]
예제 #19
0
def _subsystem_apply_reference(state, channel, mask):
    if isket(state):
        state = ket2dm(state)

    if isoper(channel):
        full_oper = tensor([
            channel if mask[j] else qeye(state.dims[0][j])
            for j in range(len(state.dims[0]))
        ])
        return full_oper * state * full_oper.dag()
    else:
        # Go to Choi, then Kraus
        # chan_mat = array(channel.data.todense())
        choi_matrix = super_to_choi(channel)
        vals, vecs = eig(choi_matrix.full())
        vecs = list(map(array, zip(*vecs)))
        kraus_list = [
            sqrt(vals[j]) * vec2mat(vecs[j]) for j in range(len(vals))
        ]
        # Kraus operators to be padded with identities:
        k_qubit_kraus_list = product(kraus_list, repeat=sum(mask))
        rho_out = Qobj(inpt=zeros(state.shape), dims=state.dims)
        for operator_iter in k_qubit_kraus_list:
            operator_iter = iter(operator_iter)
            op_iter_list = [
                next(operator_iter) if mask[j] else qeye(state.dims[0][j])
                for j in range(len(state.dims[0]))
            ]
            full_oper = tensor(list(map(Qobj, op_iter_list)))
            rho_out = rho_out + full_oper * state * full_oper.dag()
        return Qobj(rho_out)
예제 #20
0
파일: correlation.py 프로젝트: kwyip/qutip
def _correlation_es_2t(H, state0, tlist, taulist, c_ops, a_op, b_op, c_op):
    """
    Internal function for calculating the three-operator two-time
    correlation function:
    <A(t)B(t+tau)C(t)>
    using an exponential series solver.
    """

    # the solvers only work for positive time differences and the correlators
    # require positive tau
    if state0 is None:
        rho0 = steadystate(H, c_ops)
        tlist = [0]
    elif isket(state0):
        rho0 = ket2dm(state0)
    else:
        rho0 = state0

    if debug:
        print(inspect.stack()[0][3])

    # contruct the Liouvillian
    L = liouvillian(H, c_ops)

    corr_mat = np.zeros([np.size(tlist), np.size(taulist)], dtype=complex)
    solES_t = ode2es(L, rho0)

    # evaluate the correlation function
    for t_idx in range(len(tlist)):
        rho_t = esval(solES_t, [tlist[t_idx]])
        solES_tau = ode2es(L, c_op * rho_t * a_op)
        corr_mat[t_idx, :] = esval(expect(b_op, solES_tau), taulist)

    return corr_mat
예제 #21
0
    def update(self, rho):
        """
        Calculate the probability function for the given state of an harmonic
        oscillator (as density matrix)
        """

        if isket(rho):
            rho = ket2dm(rho)

        self.data = np.zeros(len(self.xvecs[0]), dtype=complex)
        M, N = rho.shape

        for m in range(M):
            k_m = pow(self.omega / pi, 0.25) / \
                sqrt(2 ** m * factorial(m)) * \
                exp(-self.xvecs[0] ** 2 / 2.0) * \
                np.polyval(hermite(m), self.xvecs[0])

            for n in range(N):
                k_n = pow(self.omega / pi, 0.25) / \
                    sqrt(2 ** n * factorial(n)) * \
                    exp(-self.xvecs[0] ** 2 / 2.0) * \
                    np.polyval(hermite(n), self.xvecs[0])

                self.data += np.conjugate(k_n) * k_m * rho.data[m, n]
예제 #22
0
def _correlation_me_2op_2t(H, rho0, tlist, taulist, c_ops, a_op, b_op,
                           reverse=False, args=None, options=Odeoptions()):
    """
    Internal function for calculating correlation functions using the master
    equation solver. See :func:`correlation` for usage.
    """

    if debug:
        print(inspect.stack()[0][3])

    if rho0 is None:
        rho0 = steadystate(H, c_ops)
    elif rho0 and isket(rho0):
        rho0 = ket2dm(rho0)

    C_mat = np.zeros([np.size(tlist), np.size(taulist)], dtype=complex)

    rho_t_list = mesolve(
        H, rho0, tlist, c_ops, [], args=args, options=options).states

    if reverse:
        # <A(t)B(t+tau)>
        for t_idx, rho_t in enumerate(rho_t_list):
            C_mat[t_idx, :] = mesolve(H, rho_t * a_op, taulist,
                                      c_ops, [b_op], args=args,
                                      options=options).expect[0]
    else:
        # <A(t+tau)B(t)>
        for t_idx, rho_t in enumerate(rho_t_list):
            C_mat[t_idx, :] = mesolve(H, b_op * rho_t, taulist,
                                      c_ops, [a_op], args=args,
                                      options=options).expect[0]

    return C_mat
예제 #23
0
def _correlation_es_2op_1t(H, rho0, tlist, c_ops, a_op, b_op, reverse=False,
                           args=None, options=Odeoptions()):
    """
    Internal function for calculating correlation functions using the
    exponential series solver. See :func:`correlation_ss` usage.
    """

    if debug:
        print(inspect.stack()[0][3])

    # contruct the Liouvillian
    L = liouvillian(H, c_ops)

    # find the steady state
    if rho0 is None:
        rho0 = steadystate(L)
    elif rho0 and isket(rho0):
        rho0 = ket2dm(rho0)

    # evaluate the correlation function
    if reverse:
        # <A(t)B(t+tau)>
        solC_tau = ode2es(L, rho0 * a_op)
        return esval(expect(b_op, solC_tau), tlist)
    else:
        # default: <A(t+tau)B(t)>
        solC_tau = ode2es(L, b_op * rho0)
        return esval(expect(a_op, solC_tau), tlist)
예제 #24
0
파일: test_qobj.py 프로젝트: xinwang1/qutip
def test_composite_vec():
    """
    Composite: Tests compositing states and density operators.
    """
    k1 = rand_ket(5)
    k2 = rand_ket(7)
    r1 = operator_to_vector(ket2dm(k1))
    r2 = operator_to_vector(ket2dm(k2))

    r3 = operator_to_vector(rand_dm(3))
    r4 = operator_to_vector(rand_dm(4))

    assert_(composite(k1, k2) == tensor(k1, k2))
    assert_(composite(r3, r4) == super_tensor(r3, r4))
    assert_(composite(k1, r4) == super_tensor(r1, r4))
    assert_(composite(r3, k2) == super_tensor(r3, r2))
예제 #25
0
def _subsystem_apply_reference(state, channel, mask):
    if isket(state):
        state = ket2dm(state)

    if isoper(channel):
        full_oper = tensor([channel if mask[j]
                            else qeye(state.dims[0][j])
                            for j in range(len(state.dims[0]))])
        return full_oper * state * full_oper.dag()
    else:
        # Go to Choi, then Kraus
        # chan_mat = array(channel.data.todense())
        choi_matrix = super_to_choi(channel)
        vals, vecs = eig(choi_matrix.full())
        vecs = list(map(array, zip(*vecs)))
        kraus_list = [sqrt(vals[j]) * vec2mat(vecs[j])
                      for j in range(len(vals))]
        # Kraus operators to be padded with identities:
        k_qubit_kraus_list = product(kraus_list, repeat=sum(mask))
        rho_out = Qobj(inpt=zeros(state.shape), dims=state.dims)
        for operator_iter in k_qubit_kraus_list:
            operator_iter = iter(operator_iter)
            op_iter_list = [next(operator_iter).conj().T if mask[j]
                            else qeye(state.dims[0][j])
                            for j in range(len(state.dims[0]))]
            full_oper = tensor(list(map(Qobj, op_iter_list)))
            rho_out = rho_out + full_oper * state * full_oper.dag()
        return Qobj(rho_out)
예제 #26
0
    def update(self, rho):
        """
        Calculate the probability function for the given state of an harmonic
        oscillator (as density matrix)
        """

        if isket(rho):
            rho = ket2dm(rho)

        self.data = np.zeros(len(self.xvecs[0]), dtype=complex)
        M, N = rho.shape

        for m in range(M):
            k_m = pow(self.omega / pi, 0.25) / \
                sqrt(2 ** m * factorial(m)) * \
                exp(-self.xvecs[0] ** 2 / 2.0) * \
                np.polyval(hermite(m), self.xvecs[0])

            for n in range(N):
                k_n = pow(self.omega / pi, 0.25) / \
                    sqrt(2 ** n * factorial(n)) * \
                    exp(-self.xvecs[0] ** 2 / 2.0) * \
                    np.polyval(hermite(n), self.xvecs[0])

                self.data += np.conjugate(k_n) * k_m * rho.data[m, n]
예제 #27
0
파일: test_qobj.py 프로젝트: xinwang1/qutip
def test_call():
    """
    Test Qobj: Call
    """
    # Make test objects.
    psi = rand_ket(3)
    rho = rand_dm_ginibre(3)
    U = rand_unitary(3)
    S = rand_super_bcsz(3)

    # Case 0: oper(ket).
    assert U(psi) == U * psi

    # Case 1: oper(oper). Should raise TypeError.
    with expect_exception(TypeError):
        U(rho)

    # Case 2: super(ket).
    assert S(psi) == vector_to_operator(S * operator_to_vector(ket2dm(psi)))

    # Case 3: super(oper).
    assert S(rho) == vector_to_operator(S * operator_to_vector(rho))

    # Case 4: super(super). Should raise TypeError.
    with expect_exception(TypeError):
        S(S)
예제 #28
0
def plot_fock_distribution(rho,
                           offset=0,
                           fig=None,
                           ax=None,
                           figsize=(8, 6),
                           title=None,
                           unit_y_range=True):
    """
    Plot the Fock distribution for a density matrix (or ket) that describes
    an oscillator mode.

    Parameters
    ----------
    rho : :class:`qutip.qobj.Qobj`
        The density matrix (or ket) of the state to visualize.

    fig : a matplotlib Figure instance
        The Figure canvas in which the plot will be drawn.

    ax : a matplotlib axes instance
        The axes context in which the plot will be drawn.

    title : string
        An optional title for the figure.

    figsize : (width, height)
        The size of the matplotlib figure (in inches) if it is to be created
        (that is, if no 'fig' and 'ax' arguments are passed).

    Returns
    -------
    fig, ax : tuple
        A tuple of the matplotlib figure and axes instances used to produce
        the figure.
    """

    if not fig and not ax:
        fig, ax = plt.subplots(1, 1, figsize=figsize)

    if isket(rho):
        rho = ket2dm(rho)

    N = rho.shape[0]

    ax.bar(np.arange(offset, offset + N) - .4,
           np.real(rho.diag()),
           color="green",
           alpha=0.6,
           width=0.8)
    if unit_y_range:
        ax.set_ylim(0, 1)

    ax.set_xlim(-.5 + offset, N + offset)
    ax.set_xlabel('Fock number', fontsize=12)
    ax.set_ylabel('Occupation probability', fontsize=12)

    if title:
        ax.set_title(title)

    return fig, ax
예제 #29
0
파일: test_qobj.py 프로젝트: arnelg/qutip
def test_composite_vec():
    """
    Composite: Tests compositing states and density operators.
    """
    k1 = rand_ket(5)
    k2 = rand_ket(7)
    r1 = operator_to_vector(ket2dm(k1))
    r2 = operator_to_vector(ket2dm(k2))

    r3 = operator_to_vector(rand_dm(3))
    r4 = operator_to_vector(rand_dm(4))

    assert_(composite(k1, k2) == tensor(k1, k2))
    assert_(composite(r3, r4) == super_tensor(r3, r4))
    assert_(composite(k1, r4) == super_tensor(r1, r4))
    assert_(composite(r3, k2) == super_tensor(r3, r2))
예제 #30
0
def _mesolve_func_td(H_func, rho0, tlist, c_op_list, expt_ops, H_args, opt):
    """!
    Evolve the density matrix using an ODE solver with time dependent
    Hamiltonian.
    """

    n_op = len(c_op_list)
        
    #
    # check initial state
    #
    if isket(rho0):
        # if initial state is a ket and no collapse operator where given,
        # fallback on the unitary schrodinger equation solver
        if n_op == 0:
            return _wfsolve_list_td(H_func, rho0, tlist, expt_ops, H_args, opt)

        # Got a wave function as initial state: convert to density matrix.
        rho0 = ket2dm(rho0)

    #
    # construct liouvillian
    #
    L = 0
    for m in range(0, n_op):
        cdc = c_op_list[m].dag() * c_op_list[m]
        if L == 0:
            L = spre(c_op_list[m])*spost(c_op_list[m].dag())-0.5*spre(cdc)-0.5*spost(cdc)            
        else:
            L += spre(c_op_list[m])*spost(c_op_list[m].dag())-0.5*spre(cdc)-0.5*spost(cdc)

    if n_op > 0:
        L_func_and_args = [H_func, L.data]
    else:
        n,m = rho0.shape
        L_func_and_args = [H_func, sp.lil_matrix((n**2,m**2)).tocsr()]

    for arg in H_args:
        if isinstance(arg,Qobj):
            L_func_and_args.append((-1j*(spre(arg) - spost(arg))).data)
        else:
            L_func_and_args.append(arg)

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full())
    r = scipy.integrate.ode(_ode_rho_func_td)
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                              atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps,
                              first_step=opt.first_step, min_step=opt.min_step,
                              max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])
    r.set_f_params(L_func_and_args)

    #
    # call generic ODE code
    #
    return _generic_ode_solve(r, rho0, tlist, expt_ops, opt, vec2mat)
예제 #31
0
def _mesolve_const(H, rho0, tlist, c_op_list, e_ops, args, opt,
                   progress_bar):
    """
    Evolve the density matrix using an ODE solver, for constant hamiltonian
    and collapse operators.
    """

    if debug:
        print(inspect.stack()[0][3])

    #
    # check initial state
    #
    if isket(rho0):
        # if initial state is a ket and no collapse operator where given,
        # fall back on the unitary schrodinger equation solver
        if len(c_op_list) == 0 and isoper(H):
            return _sesolve_const(H, rho0, tlist, e_ops, args, opt,
                                  progress_bar)

        # Got a wave function as initial state: convert to density matrix.
        rho0 = ket2dm(rho0)

    #
    # construct liouvillian
    #
    if opt.tidy:
        H = H.tidyup(opt.atol)

    L = liouvillian(H, c_op_list)


    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full()).ravel('F')
    if issuper(rho0):
        r = scipy.integrate.ode(_ode_super_func)
        r.set_f_params(L.data)
    else:
        if opt.use_openmp and L.data.nnz >= qset.openmp_thresh:
            r = scipy.integrate.ode(cy_ode_rhs_openmp)
            r.set_f_params(L.data.data, L.data.indices, L.data.indptr,
                            opt.openmp_threads)
        else:
            r = scipy.integrate.ode(cy_ode_rhs)
            r.set_f_params(L.data.data, L.data.indices, L.data.indptr)
        # r = scipy.integrate.ode(_ode_rho_test)
        # r.set_f_params(L.data)
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps,
                     first_step=opt.first_step, min_step=opt.min_step,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    #
    # call generic ODE code
    #
    return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar)
예제 #32
0
def _mesolve_const(H, rho0, tlist, c_op_list, e_ops, args, opt,
                   progress_bar):
    """
    Evolve the density matrix using an ODE solver, for constant hamiltonian
    and collapse operators.
    """

    if debug:
        print(inspect.stack()[0][3])

    #
    # check initial state
    #
    if isket(rho0):
        # if initial state is a ket and no collapse operator where given,
        # fall back on the unitary schrodinger equation solver
        if len(c_op_list) == 0 and isoper(H):
            return _sesolve_const(H, rho0, tlist, e_ops, args, opt,
                                  progress_bar)

        # Got a wave function as initial state: convert to density matrix.
        rho0 = ket2dm(rho0)

    #
    # construct liouvillian
    #
    if opt.tidy:
        H = H.tidyup(opt.atol)

    L = liouvillian(H, c_op_list)
    

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full()).ravel('F')
    if issuper(rho0):
        r = scipy.integrate.ode(_ode_super_func)
        r.set_f_params(L.data)
    else:
        if opt.use_openmp and L.data.nnz >= qset.openmp_thresh:
            r = scipy.integrate.ode(cy_ode_rhs_openmp)
            r.set_f_params(L.data.data, L.data.indices, L.data.indptr, 
                            opt.openmp_threads)
        else:
            r = scipy.integrate.ode(cy_ode_rhs)
            r.set_f_params(L.data.data, L.data.indices, L.data.indptr)
        # r = scipy.integrate.ode(_ode_rho_test)
        # r.set_f_params(L.data)
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps,
                     first_step=opt.first_step, min_step=opt.min_step,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    #
    # call generic ODE code
    #
    return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar)
예제 #33
0
def steadystate_nonlinear(L_func,
                          rho0,
                          args={},
                          maxiter=10,
                          random_initial_state=False,
                          tol=1e-6,
                          itertol=1e-5,
                          use_umfpack=True,
                          verbose=False):
    """
    Steady state for the evolution subject to the nonlinear Liouvillian
    (which depends on the density matrix).

    .. note:: Experimental. Not at all certain that the inverse power method
              works for state-dependent Liouvillian operators.
    """
    use_solver(assumeSortedIndices=True, useUmfpack=use_umfpack)
    if random_initial_state:
        rhoss = rand_dm(rho0.shape[0], 1.0, dims=rho0.dims)
    elif isket(rho0):
        rhoss = ket2dm(rho0)
    else:
        rhoss = Qobj(rho0)

    v = mat2vec(rhoss.full())

    n = prod(rhoss.shape)
    tr_vec = sp.eye(rhoss.shape[0], rhoss.shape[0], format='coo')
    tr_vec = tr_vec.reshape((1, n))

    it = 0
    while it < maxiter:

        L = L_func(rhoss, args)
        L = L.data.tocsc() - (tol**2) * sp.eye(n, n, format='csc')
        L.sort_indices()

        v = spsolve(L, v, use_umfpack=use_umfpack)
        v = v / la.norm(v, np.inf)

        data = v / sum(tr_vec.dot(v))
        data = reshape(data, (rhoss.shape[0], rhoss.shape[1])).T
        rhoss.data = sp.csr_matrix(data)

        it += 1

        if la.norm(L * v, np.inf) <= tol:
            break

    if it >= maxiter:
        raise ValueError('Failed to find steady state after ' + str(maxiter) +
                         ' iterations')

    rhoss = 0.5 * (rhoss + rhoss.dag())
    return rhoss.tidyup() if qset.auto_tidyup else rhoss
예제 #34
0
파일: visualization.py 프로젝트: trxw/qutip
def plot_wigner_fock_distribution(rho, fig=None, axes=None, figsize=(8, 4),
                                  cmap=None, alpha_max=7.5, colorbar=False,
                                  method='iterative'):
    """
    Plot the Fock distribution and the Wigner function for a density matrix
    (or ket) that describes an oscillator mode.

    Parameters
    ----------
    rho : :class:`qutip.qobj.Qobj`
        The density matrix (or ket) of the state to visualize.

    fig : a matplotlib Figure instance
        The Figure canvas in which the plot will be drawn.

    axes : a list of two matplotlib axes instances
        The axes context in which the plot will be drawn.

    figsize : (width, height)
        The size of the matplotlib figure (in inches) if it is to be created
        (that is, if no 'fig' and 'ax' arguments are passed).

    cmap : a matplotlib cmap instance
        The colormap.

    alpha_max : float
        The span of the x and y coordinates (both [-alpha_max, alpha_max]).

    colorbar : bool
        Whether (True) or not (False) a colorbar should be attached to the
        Wigner function graph.

    method : string {'iterative', 'laguerre', 'fft'}
        The method used for calculating the wigner function. See the
        documentation for qutip.wigner for details.

    Returns
    -------
    fig, ax : tuple
        A tuple of the matplotlib figure and axes instances used to produce
        the figure.
    """

    if not fig and not axes:
        fig, axes = plt.subplots(1, 2, figsize=figsize)

    if isket(rho):
        rho = ket2dm(rho)

    plot_fock_distribution(rho, fig=fig, ax=axes[0])
    plot_wigner(rho, fig=fig, ax=axes[1], figsize=figsize, cmap=cmap,
                alpha_max=alpha_max, colorbar=colorbar, method=method)

    return fig, axes
예제 #35
0
def tracedist(A, B, sparse=False, tol=0):
    """
    Calculates the trace distance between two density matrices..
    See: Nielsen & Chuang, "Quantum Computation and Quantum Information"

    Parameters
    ----------!=
    A : qobj
        Density matrix or state vector.
    B : qobj
        Density matrix or state vector with same dimensions as A.
    tol : float
        Tolerance used by sparse eigensolver, if used. (0=Machine precision)
    sparse : {False, True}
        Use sparse eigensolver.

    Returns
    -------
    tracedist : float
        Trace distance between A and B.

    Examples
    --------
    >>> x=fock_dm(5,3)
    >>> y=coherent_dm(5,1)
    >>> tracedist(x,y)
    0.9705143161472971

    """
    if A.isket or A.isbra:
        A = ket2dm(A)
    if B.isket or B.isbra:
        B = ket2dm(B)

    if A.dims != B.dims:
        raise TypeError("A and B do not have same dimensions.")

    diff = A - B
    diff = diff.dag() * diff
    vals = sp_eigs(diff.data, diff.isherm, vecs=False, sparse=sparse, tol=tol)
    return float(np.real(0.5 * np.sum(np.sqrt(np.abs(vals)))))
예제 #36
0
def tracedist(A, B, sparse=False, tol=0):
    """
    Calculates the trace distance between two density matrices..
    See: Nielsen & Chuang, "Quantum Computation and Quantum Information"

    Parameters
    ----------!=
    A : qobj
        Density matrix or state vector.
    B : qobj
        Density matrix or state vector with same dimensions as A.
    tol : float
        Tolerance used by sparse eigensolver, if used. (0=Machine precision)
    sparse : {False, True}
        Use sparse eigensolver.

    Returns
    -------
    tracedist : float
        Trace distance between A and B.

    Examples
    --------
    >>> x=fock_dm(5,3)
    >>> y=coherent_dm(5,1)
    >>> tracedist(x,y)
    0.9705143161472971

    """
    if A.isket or A.isbra:
        A = ket2dm(A)
    if B.isket or B.isbra:
        B = ket2dm(B)

    if A.dims != B.dims:
        raise TypeError("A and B do not have same dimensions.")

    diff = A - B
    diff = diff.dag() * diff
    vals = sp_eigs(diff.data, diff.isherm, vecs=False, sparse=sparse, tol=tol)
    return float(np.real(0.5 * np.sum(np.sqrt(np.abs(vals)))))
예제 #37
0
def plot_fock_distribution(rho, offset=0, fig=None, ax=None,
                           figsize=(8, 6), title=None, unit_y_range=True):
    """
    Plot the Fock distribution for a density matrix (or ket) that describes
    an oscillator mode.

    Parameters
    ----------
    rho : :class:`qutip.qobj.Qobj`
        The density matrix (or ket) of the state to visualize.

    fig : a matplotlib Figure instance
        The Figure canvas in which the plot will be drawn.

    ax : a matplotlib axes instance
        The axes context in which the plot will be drawn.

    title : string
        An optional title for the figure.

    figsize : (width, height)
        The size of the matplotlib figure (in inches) if it is to be created
        (that is, if no 'fig' and 'ax' arguments are passed).

    Returns
    -------
    fig, ax : tuple
        A tuple of the matplotlib figure and axes instances used to produce
        the figure.
    """

    if not fig and not ax:
        fig, ax = plt.subplots(1, 1, figsize=figsize)

    if isket(rho):
        rho = ket2dm(rho)

    N = rho.shape[0]

    ax.bar(np.arange(offset, offset + N) - .4, np.real(rho.diag()),
           color="green", alpha=0.6, width=0.8)
    if unit_y_range:
        ax.set_ylim(0, 1)

    ax.set_xlim(-.5 + offset, N + offset)
    ax.set_xlabel('Fock number', fontsize=12)
    ax.set_ylabel('Occupation probability', fontsize=12)

    if title:
        ax.set_title(title)

    return fig, ax
예제 #38
0
def _correlation_me_2t(H,
                       state0,
                       tlist,
                       taulist,
                       c_ops,
                       a_op,
                       b_op,
                       c_op,
                       args=None,
                       options=Options()):
    """
    Internal function for calculating the three-operator two-time
    correlation function:
    <A(t)B(t+tau)C(t)>
    using a master equation solver.
    """

    # the solvers only work for positive time differences and the correlators
    # require positive tau
    if state0 is None:
        rho0 = steadystate(H, c_ops)
        tlist = [0]
    elif isket(state0):
        rho0 = ket2dm(state0)
    else:
        rho0 = state0

    if debug:
        print(inspect.stack()[0][3])

    rho_t = mesolve(H, rho0, tlist, c_ops, [], args=args,
                    options=options).states
    corr_mat = np.zeros([np.size(tlist), np.size(taulist)], dtype=complex)
    H_shifted, _args = _transform_H_t_shift(H, args)

    for t_idx, rho in enumerate(rho_t):
        if not isinstance(H, Qobj):
            _args["_t0"] = tlist[t_idx]

        corr_mat[t_idx, :] = mesolve(H_shifted,
                                     c_op * rho * a_op,
                                     taulist,
                                     c_ops, [b_op],
                                     args=_args,
                                     options=options).expect[0]

        if t_idx == 1:
            options.rhs_reuse = True

    return corr_mat
예제 #39
0
def spin_q_function(rho, theta, phi):
    """Husimi Q-function for spins.

    Parameters
    ----------

    state : qobj
        A state vector or density matrix for a spin-j quantum system.

    theta : array_like
        theta-coordinates at which to calculate the Q function.

    phi : array_like
        phi-coordinates at which to calculate the Q function.

    Returns
    -------

    Q, THETA, PHI : 2d-array
        Values representing the spin Q function at the values specified
        by THETA and PHI.

    """

    if rho.type == 'bra':
        rho = rho.dag()

    if rho.type == 'ket':
        rho = ket2dm(rho)

    J = rho.shape[0]
    j = (J - 1) / 2

    THETA, PHI = meshgrid(theta, phi)

    Q = np.zeros_like(THETA, dtype=complex)

    for m1 in arange(-j, j+1):

        Q += binom(2*j, j+m1) * cos(THETA/2) ** (2*(j-m1)) * sin(THETA/2) ** (2*(j+m1)) * \
            rho.data[int(j-m1), int(j-m1)]

        for m2 in arange(m1+1, j+1):

            Q += (sqrt(binom(2*j, j+m1)) * sqrt(binom(2*j, j+m2)) *
                  cos(THETA/2) ** (2*j-m1-m2) * sin(THETA/2) ** (2*j+m1+m2)) * \
                (exp(1j * (m2-m1) * PHI) * rho.data[int(j-m1), int(j-m2)] +
                 exp(1j * (m1-m2) * PHI) * rho.data[int(j-m2), int(j-m1)])

    return Q.real, THETA, PHI
예제 #40
0
파일: steady.py 프로젝트: markusbaden/qutip
def steady_nonlinear(L_func, rho0, args={}, maxiter=10,
                     random_initial_state=False,
                     tol=1e-6, itertol=1e-5, use_umfpack=True):
    """
    Steady state for the evolution subject to the nonlinear Liouvillian
    (which depends on the density matrix).

    .. note:: Experimental. Not at all certain that the inverse power method
              works for state-dependent liouvillian operators.
    """
    use_solver(assumeSortedIndices=True, useUmfpack=use_umfpack)

    if random_initial_state:
        rhoss = rand_dm(rho0.shape[0], 1.0, dims=rho0.dims)
    elif isket(rho0):
        rhoss = ket2dm(rho0)
    else:
        rhoss = Qobj(rho0)

    v = mat2vec(rhoss.full())

    n = prod(rhoss.shape)
    tr_vec = sp.eye(rhoss.shape[0], rhoss.shape[0], format='lil')
    tr_vec = tr_vec.reshape((1, n)).tocsr()

    it = 0
    while it < maxiter:

        L = L_func(rhoss, args)
        L = L.data.tocsc() - (tol ** 2) * sp.eye(n, n, format='csc')
        L.sort_indices()

        v = spsolve(L, v, permc_spec="MMD_AT_PLUS_A", use_umfpack=use_umfpack)
        v = v / la.norm(v, np.inf)

        data = v / sum(tr_vec.dot(v))
        data = reshape(data, (rhoss.shape[0], rhoss.shape[1])).T
        rhoss.data = sp.csr_matrix(data)

        it += 1

        if la.norm(L * v, np.inf) <= tol:
            break

    if it >= maxiter:
        raise ValueError('Failed to find steady state after ' +
                         str(maxiter) + ' iterations')

    #rhoss.data = 0.5 * (data + data.conj().T)
    return rhoss.tidyup() if qset.auto_tidyup else rhoss
예제 #41
0
def _correlation_me_2op_2t(H,
                           rho0,
                           tlist,
                           taulist,
                           c_ops,
                           a_op,
                           b_op,
                           reverse=False,
                           args=None,
                           options=Odeoptions()):
    """
    Internal function for calculating correlation functions using the master
    equation solver. See :func:`correlation` for usage.
    """

    if debug:
        print(inspect.stack()[0][3])

    if rho0 is None:
        rho0 = steadystate(H, c_ops)
    elif rho0 and isket(rho0):
        rho0 = ket2dm(rho0)

    C_mat = np.zeros([np.size(tlist), np.size(taulist)], dtype=complex)

    rho_t_list = mesolve(H, rho0, tlist, c_ops, [], args=args,
                         options=options).states

    if reverse:
        # <A(t)B(t+tau)>
        for t_idx, rho_t in enumerate(rho_t_list):
            C_mat[t_idx, :] = mesolve(H,
                                      rho_t * a_op,
                                      taulist,
                                      c_ops, [b_op],
                                      args=args,
                                      options=options).expect[0]
    else:
        # <A(t+tau)B(t)>
        for t_idx, rho_t in enumerate(rho_t_list):
            C_mat[t_idx, :] = mesolve(H,
                                      b_op * rho_t,
                                      taulist,
                                      c_ops, [a_op],
                                      args=args,
                                      options=options).expect[0]

    return C_mat
예제 #42
0
def _correlation_me_2t(H, state0, tlist, taulist, c_ops, a_op, b_op, c_op,
                       args={}, options=Options()):
    """
    Internal function for calculating the three-operator two-time
    correlation function:
    <A(t)B(t+tau)C(t)>
    using a master equation solver.
    """

    # the solvers only work for positive time differences and the correlators
    # require positive tau
    if state0 is None:
        rho0 = steadystate(H, c_ops)
        tlist = [0]
    elif isket(state0):
        rho0 = ket2dm(state0)
    else:
        rho0 = state0

    if debug:
        print(inspect.stack()[0][3])

    rho_t = mesolve(H, rho0, tlist, c_ops, [],
                    args=args, options=options).states
    corr_mat = np.zeros([np.size(tlist), np.size(taulist)], dtype=complex)
    H_shifted, c_ops_shifted, _args = _transform_L_t_shift(H, c_ops, args)
    if config.tdname:
        _cython_build_cleanup(config.tdname)
    rhs_clear()

    for t_idx, rho in enumerate(rho_t):
        if not isinstance(H, Qobj):
            _args["_t0"] = tlist[t_idx]

        corr_mat[t_idx, :] = mesolve(
            H_shifted, c_op * rho * a_op, taulist, c_ops_shifted,
            [b_op], args=_args, options=options
        ).expect[0]

        if t_idx == 1:
            options.rhs_reuse = True

    if config.tdname:
        _cython_build_cleanup(config.tdname)
    rhs_clear()

    return corr_mat
def mesolve_const_checkpoint(H, rho0, tlist, c_op_list, e_ops, args, opt,
                             progress_bar, save, subdir):
    """
    Evolve the density matrix using an ODE solver, for constant hamiltonian
    and collapse operators.
    """

    if debug:
        print(inspect.stack()[0][3])

    #
    # check initial state
    #
    if isket(rho0):
        # Got a wave function as initial state: convert to density matrix.
        rho0 = ket2dm(rho0)

    #
    # construct liouvillian
    #
    if opt.tidy:
        H = H.tidyup(opt.atol)

    L = liouvillian(H, c_op_list)

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full()).ravel()
    r = scipy.integrate.ode(cy_ode_rhs)
    r.set_f_params(L.data.data, L.data.indices, L.data.indptr)
    r.set_integrator('zvode',
                     method=opt.method,
                     order=opt.order,
                     atol=opt.atol,
                     rtol=opt.rtol,
                     nsteps=opt.nsteps,
                     first_step=opt.first_step,
                     min_step=opt.min_step,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    #
    # call generic ODE code
    #
    return generic_ode_solve_checkpoint(r, rho0, tlist, e_ops, opt,
                                        progress_bar, save, subdir)
예제 #44
0
파일: correlation.py 프로젝트: ntezak/qutip
def _correlation_me_4op_1t(H, rho0, tlist, c_ops, a_op, b_op, c_op, d_op, args=None, options=Options()):
    """
    Calculate the four-operator two-time correlation function on the form
    <A(0)B(tau)C(tau)D(0)>.

    See, Gardiner, Quantum Noise, Section 5.2.1
    """

    if debug:
        print(inspect.stack()[0][3])

    if rho0 is None:
        rho0 = steadystate(H, c_ops)
    elif rho0 and isket(rho0):
        rho0 = ket2dm(rho0)

    return mesolve(H, d_op * rho0 * a_op, tlist, c_ops, [b_op * c_op], args=args, options=options).expect[0]
예제 #45
0
def _correlation_es_2op_2t(H,
                           rho0,
                           tlist,
                           taulist,
                           c_ops,
                           a_op,
                           b_op,
                           reverse=False,
                           args=None,
                           options=Odeoptions()):
    """
    Internal function for calculating correlation functions using the
    exponential series solver. See :func:`correlation` usage.
    """

    if debug:
        print(inspect.stack()[0][3])

    # contruct the Liouvillian
    L = liouvillian(H, c_ops)

    if rho0 is None:
        rho0 = steadystate(L)
    elif rho0 and isket(rho0):
        rho0 = ket2dm(rho0)

    C_mat = np.zeros([np.size(tlist), np.size(taulist)], dtype=complex)

    solES_t = ode2es(L, rho0)

    # evaluate the correlation function
    if reverse:
        # <A(t)B(t+tau)>
        for t_idx in range(len(tlist)):
            rho_t = esval(solES_t, [tlist[t_idx]])
            solES_tau = ode2es(L, rho_t * a_op)
            C_mat[t_idx, :] = esval(expect(b_op, solES_tau), taulist)

    else:
        # default: <A(t+tau)B(t)>
        for t_idx in range(len(tlist)):
            rho_t = esval(solES_t, [tlist[t_idx]])
            solES_tau = ode2es(L, b_op * rho_t)
            C_mat[t_idx, :] = esval(expect(a_op, solES_tau), taulist)

    return C_mat
예제 #46
0
def spin_wigner(rho, theta, phi):
    """Wigner function for spins.

    Parameters
    ----------

    state : qobj
        A state vector or density matrix for a spin-j quantum system.

    theta : array_like
        theta-coordinates at which to calculate the Q function.

    phi : array_like
        phi-coordinates at which to calculate the Q function.

    Returns
    -------

    W, THETA, PHI : 2d-array
        Values representing the spin Wigner function at the values specified
        by THETA and PHI.

    .. note::

        Experimental.

    """

    if rho.type == 'bra':
        rho = rho.dag()

    if rho.type == 'ket':
        rho = ket2dm(rho)

    J = rho.shape[0]
    j = (J - 1) / 2

    THETA, PHI = meshgrid(theta, phi)

    W = np.zeros_like(THETA, dtype=complex)

    for k in range(int(2 * j)+1):
        for q in range(-k, k+1):
            W += _rho_kq(rho, j, k, q) * sph_harm(q, k, PHI, THETA)

    return W, THETA, PHI
예제 #47
0
파일: entropy.py 프로젝트: roshanzr/qutip
def concurrence(rho):
    """
    Calculate the concurrence entanglement measure for a two-qubit state.

    Parameters
    ----------
    state : qobj
        Ket, bra, or density matrix for a two-qubit state.

    Returns
    -------
    concur : float
        Concurrence

    References
    ----------

    .. [1] http://en.wikipedia.org/wiki/Concurrence_(quantum_computing)

    """
    if rho.isket and rho.dims != [[2, 2], [1, 1]]:
        raise Exception("Ket must be tensor product of two qubits.")

    elif rho.isbra and rho.dims != [[1, 1], [2, 2]]:
        raise Exception("Bra must be tensor product of two qubits.")

    elif rho.isoper and rho.dims != [[2, 2], [2, 2]]:
        raise Exception("Density matrix must be tensor product of two qubits.")

    if rho.isket or rho.isbra:
        rho = ket2dm(rho)

    sysy = tensor(sigmay(), sigmay())

    rho_tilde = (rho * sysy) * (rho.conj() * sysy)

    evals = rho_tilde.eigenenergies()

    # abs to avoid problems with sqrt for very small negative numbers
    evals = abs(sort(real(evals)))

    lsum = sqrt(evals[3]) - sqrt(evals[2]) - sqrt(evals[1]) - sqrt(evals[0])

    return max(0, lsum)
예제 #48
0
파일: test_gates.py 프로젝트: tmng/qutip
    def testExpandGate2toN(self):
        """
        gates: expand 2 to N (using cnot, iswap, sqrtswap)
        """

        a, b = np.random.rand(), np.random.rand()
        k1 = (a * basis(2, 0) + b * basis(2, 1)).unit()

        c, d = np.random.rand(), np.random.rand()
        k2 = (c * basis(2, 0) + d * basis(2, 1)).unit()

        psi_ref_in = tensor(k1, k2)

        N = 6
        psi_rand_list = [rand_ket(2) for k in range(N)]

        for g in [cnot, iswap, sqrtswap]:

            psi_ref_out = g() * psi_ref_in
            rho_ref_out = ket2dm(psi_ref_out)

            for m in range(N):
                for n in set(range(N)) - {m}:

                    psi_list = [psi_rand_list[k] for k in range(N)]
                    psi_list[m] = k1
                    psi_list[n] = k2
                    psi_in = tensor(psi_list)

                    if g == cnot:
                        G = g(N, m, n)
                    else:
                        G = g(N, [m, n])

                    psi_out = G * psi_in

                    o1 = psi_out.overlap(psi_in)
                    o2 = psi_ref_out.overlap(psi_ref_in)
                    assert_(abs(o1 - o2) < 1e-12)

                    p = [0, 1] if m < n else [1, 0]
                    rho_out = psi_out.ptrace([m, n]).permute(p)

                    assert_((rho_ref_out - rho_out).norm() < 1e-12)
예제 #49
0
def spin_wigner(rho, theta, phi):
    """Wigner function for a spin-j system on the 2-sphere of radius j
       (for j = 1/2 this is the Bloch sphere).

    Parameters
    ----------
    state : qobj
        A state vector or density matrix for a spin-j quantum system.
    theta : array_like
        Polar angle at which to calculate the W function.
    phi : array_like
        Azimuthal angle at which to calculate the W function.

    Returns
    -------
    W, THETA, PHI : 2d-array
        Values representing the spin Wigner function at the values specified
        by THETA and PHI.

    Notes
    -----
    Experimental.

    """

    if rho.type == 'bra':
        rho = rho.dag()

    if rho.type == 'ket':
        rho = ket2dm(rho)

    J = rho.shape[0]
    j = (J - 1) / 2

    THETA, PHI = meshgrid(theta, phi)

    W = np.zeros_like(THETA, dtype=complex)

    for k in range(int(2 * j)+1):
        for q in arange(-k, k+1):
            # sph_harm takes azimuthal angle then polar angle as arguments
            W += _rho_kq(rho, j, k, q) * sph_harm(q, k, PHI, THETA)

    return W, THETA, PHI
예제 #50
0
    def testExpandGate2toN(self):
        """
        gates: expand 2 to N (using cnot, iswap, sqrtswap)
        """

        a, b = np.random.rand(), np.random.rand()
        k1 = (a * basis(2, 0) + b * basis(2, 1)).unit()

        c, d = np.random.rand(), np.random.rand()
        k2 = (c * basis(2, 0) + d * basis(2, 1)).unit()

        psi_ref_in = tensor(k1, k2)

        N = 6
        psi_rand_list = [rand_ket(2) for k in range(N)]

        for g in [cnot, iswap, sqrtswap]:

            psi_ref_out = g() * psi_ref_in
            rho_ref_out = ket2dm(psi_ref_out)

            for m in range(N):
                for n in set(range(N)) - {m}:

                    psi_list = [psi_rand_list[k] for k in range(N)]
                    psi_list[m] = k1
                    psi_list[n] = k2
                    psi_in = tensor(psi_list)

                    if g == cnot:
                        G = g(N, m, n)
                    else:
                        G = g(N, [m, n])

                    psi_out = G * psi_in

                    o1 = psi_out.overlap(psi_in)
                    o2 = psi_ref_out.overlap(psi_ref_in)
                    assert_(abs(o1 - o2) < 1e-12)

                    p = [0, 1] if m < n else [1, 0]
                    rho_out = psi_out.ptrace([m, n]).permute(p)

                    assert_((rho_ref_out - rho_out).norm() < 1e-12)
예제 #51
0
파일: entropy.py 프로젝트: tmng/qutip
def concurrence(rho):
    """
    Calculate the concurrence entanglement measure for a two-qubit state.

    Parameters
    ----------
    state : qobj
        Ket, bra, or density matrix for a two-qubit state.

    Returns
    -------
    concur : float
        Concurrence

    References
    ----------

    .. [1] http://en.wikipedia.org/wiki/Concurrence_(quantum_computing)

    """
    if rho.isket and rho.dims != [[2, 2], [1, 1]]:
        raise Exception("Ket must be tensor product of two qubits.")

    elif rho.isbra and rho.dims != [[1, 1], [2, 2]]:
        raise Exception("Bra must be tensor product of two qubits.")

    elif rho.isoper and rho.dims != [[2, 2], [2, 2]]:
        raise Exception("Density matrix must be tensor product of two qubits.")

    if rho.isket or rho.isbra:
        rho = ket2dm(rho)

    sysy = tensor(sigmay(), sigmay())

    rho_tilde = (rho * sysy) * (rho.conj() * sysy)

    evals = rho_tilde.eigenenergies()

    # abs to avoid problems with sqrt for very small negative numbers
    evals = abs(sort(real(evals)))

    lsum = sqrt(evals[3]) - sqrt(evals[2]) - sqrt(evals[1]) - sqrt(evals[0])

    return max(0, lsum)
예제 #52
0
파일: correlation.py 프로젝트: ntezak/qutip
def _correlation_me_2op_1t(H, rho0, tlist, c_ops, a_op, b_op, reverse=False, args=None, options=Options()):
    """
    Internal function for calculating correlation functions using the master
    equation solver. See :func:`correlation_ss` for usage.
    """

    if debug:
        print(inspect.stack()[0][3])

    if rho0 is None:
        rho0 = steadystate(H, c_ops)
    elif rho0 and isket(rho0):
        rho0 = ket2dm(rho0)

    if reverse:
        # <A(t)B(t+tau)>
        return mesolve(H, rho0 * a_op, tlist, c_ops, [b_op], args=args, options=options).expect[0]
    else:
        # <A(t+tau)B(t)>
        return mesolve(H, b_op * rho0, tlist, c_ops, [a_op], args=args, options=options).expect[0]
예제 #53
0
def _correlation_me_4op_2t(H,
                           rho0,
                           tlist,
                           taulist,
                           c_ops,
                           a_op,
                           b_op,
                           c_op,
                           d_op,
                           reverse=False,
                           args=None,
                           options=Odeoptions()):
    """
    Calculate the four-operator two-time correlation function on the form
    <A(t)B(t+tau)C(t+tau)D(t)>.

    See, Gardiner, Quantum Noise, Section 5.2.1
    """

    if debug:
        print(inspect.stack()[0][3])

    if rho0 is None:
        rho0 = steadystate(H, c_ops)
    elif rho0 and isket(rho0):
        rho0 = ket2dm(rho0)

    C_mat = np.zeros([np.size(tlist), np.size(taulist)], dtype=complex)

    rho_t = mesolve(H, rho0, tlist, c_ops, [], args=args,
                    options=options).states

    for t_idx, rho in enumerate(rho_t):
        C_mat[t_idx, :] = mesolve(H,
                                  d_op * rho * a_op,
                                  taulist,
                                  c_ops, [b_op * c_op],
                                  args=args,
                                  options=options).expect[0]

    return C_mat
예제 #54
0
def entropy_vn(rho,base=e,sparse=False):
    """
    Von-Neumann entropy of density matrix
    
    Parameters
    ----------
    rho : qobj
        Density matrix.
    base : {e,2} 
        Base of logarithm.
    
    Other Parameters
    ----------------
    sparse : {False,True}
        Use sparse eigensolver.
    
    Returns
    ------- 
    entropy : float
        Von-Neumann entropy of `rho`.
    
    Examples
    --------
    >>> rho=0.5*fock_dm(2,0)+0.5*fock_dm(2,1)
    >>> entropy_vn(rho,2)
    1.0
    
    """
    if rho.type=='ket' or rho.type=='bra':
        rho=ket2dm(rho)
    vals=sp_eigs(rho,vecs=False,sparse=sparse)
    nzvals=vals[vals!=0]
    if base==2:
        logvals=log2(nzvals)
    elif base==e:
        logvals=log(nzvals)
    else:
        raise ValueError("Base must be 2 or e.")
    return float(real(-sum(nzvals*logvals)))
예제 #55
0
def _correlation_es_2op_2t(H, rho0, tlist, taulist, c_ops, a_op, b_op,
                           reverse=False, args=None, options=Odeoptions()):
    """
    Internal function for calculating correlation functions using the
    exponential series solver. See :func:`correlation` usage.
    """

    if debug:
        print(inspect.stack()[0][3])

    # contruct the Liouvillian
    L = liouvillian(H, c_ops)

    if rho0 is None:
        rho0 = steadystate(L)
    elif rho0 and isket(rho0):
        rho0 = ket2dm(rho0)

    C_mat = np.zeros([np.size(tlist), np.size(taulist)], dtype=complex)

    solES_t = ode2es(L, rho0)

    # evaluate the correlation function
    if reverse:
        # <A(t)B(t+tau)>
        for t_idx in range(len(tlist)):
            rho_t = esval(solES_t, [tlist[t_idx]])
            solES_tau = ode2es(L, rho_t * a_op)
            C_mat[t_idx, :] = esval(expect(b_op, solES_tau), taulist)

    else:
        # default: <A(t+tau)B(t)>
        for t_idx in range(len(tlist)):
            rho_t = esval(solES_t, [tlist[t_idx]])
            solES_tau = ode2es(L, b_op * rho_t)
            C_mat[t_idx, :] = esval(expect(a_op, solES_tau), taulist)

    return C_mat
예제 #56
0
파일: entropy.py 프로젝트: argriffing/qutip
def entropy_linear(rho):
    """
    Linear entropy of a density matrix.

    Parameters
    ----------
    rho : qobj
        sensity matrix or ket/bra vector.

    Returns
    -------
    entropy : float
        Linear entropy of rho.

    Examples
    --------
    >>> rho=0.5*fock_dm(2,0)+0.5*fock_dm(2,1)
    >>> entropy_linear(rho)
    0.5

    """
    if rho.type == 'ket' or rho.type == 'bra':
        rho = ket2dm(rho)
    return float(real(1.0 - (rho ** 2).tr()))