def TestPulseConstructor(): """ Test for creating empty Pulse, Pulse with constant coefficients etc. """ coeff = np.array([0.1, 0.2, 0.3, 0.4]) tlist = np.array([0., 1., 2., 3.]) ham = sigmaz() # Special ways of initializing pulse pulse2 = Pulse(sigmax(), 0, tlist, True) assert_allclose(pulse2.get_ideal_qobjevo(2).ops[0].qobj, tensor(sigmax(), identity(2))) pulse3 = Pulse(sigmay(), 0) assert_allclose(pulse3.get_ideal_qobjevo(2).cte.norm(), 0.) pulse4 = Pulse(None, None) # Dummy empty ham assert_allclose(pulse4.get_ideal_qobjevo(2).cte.norm(), 0.) tlist_noise = np.array([1., 2.5, 3.]) coeff_noise = np.array([0.5, 0.1, 0.5]) tlist_noise2 = np.array([0.5, 2, 3.]) coeff_noise2 = np.array([0.1, 0.2, 0.3]) # Pulse with different dims random_qobj = Qobj(np.random.random((3, 3))) pulse5 = Pulse(sigmaz(), 1, tlist, True) pulse5.add_coherent_noise(sigmay(), 1, tlist_noise, coeff_noise) pulse5.add_lindblad_noise( random_qobj, 0, tlist=tlist_noise2, coeff=coeff_noise2) qu, c_ops = pulse5.get_noisy_qobjevo(dims=[3, 2]) assert_allclose(qu.ops[0].qobj, tensor([identity(3), sigmaz()])) assert_allclose(qu.ops[1].qobj, tensor([identity(3), sigmay()])) assert_allclose(c_ops[0].ops[0].qobj, tensor([random_qobj, identity(2)]))
def test_decoherence_noise(self): """ Test for the decoherence noise """ tlist = np.array([0, 1, 2, 3, 4, 5, 6]) coeff = np.array([1, 1, 1, 1, 1, 1, 1]) # Time-dependent decnoise = DecoherenceNoise(sigmaz(), coeff=coeff, tlist=tlist, targets=[1]) dims = [2] * 2 systematic_noise = Pulse(None, None, label="systematic_noise", spline_kind="step_func") pulses, systematic_noise = decnoise.get_noisy_pulses( systematic_noise=systematic_noise, dims=dims) noisy_qu, c_ops = systematic_noise.get_noisy_qobjevo(dims=dims) assert_allclose(c_ops[0](0).full(), tensor(qeye(2), sigmaz()).full()) # Time-independent and all qubits decnoise = DecoherenceNoise(sigmax(), all_qubits=True) pulses, systematic_noise = decnoise.get_noisy_pulses(dims=dims) noisy_qu, c_ops = systematic_noise.get_noisy_qobjevo(dims=dims) c_ops = [qu(0) for qu in c_ops] assert_(tensor([qeye(2), sigmax()]) in c_ops) assert_(tensor([sigmax(), qeye(2)]) in c_ops) # Time-denpendent and all qubits decnoise = DecoherenceNoise(sigmax(), all_qubits=True, coeff=coeff * 2, tlist=tlist) systematic_noise = Pulse(None, None, label="systematic_noise", spline_kind="step_func") pulses, systematic_noise = decnoise.get_noisy_pulses( systematic_noise=systematic_noise, dims=dims) noisy_qu, c_ops = systematic_noise.get_noisy_qobjevo(dims=dims) assert_allclose(c_ops[0](0).full(), tensor(sigmax(), qeye(2)).full() * 2) assert_allclose(c_ops[1](0).full(), tensor(qeye(2), sigmax()).full() * 2)
def test_relaxation_noise(self): """ Test for the relaxation noise """ # only t1 a = destroy(2) dims = [2] * 3 relnoise = RelaxationNoise(t1=[1., 1., 1.], t2=None) systematic_noise = Pulse(None, None, label="system") pulses, systematic_noise = relnoise.get_noisy_pulses( dims=dims, systematic_noise=systematic_noise) noisy_qu, c_ops = systematic_noise.get_noisy_qobjevo(dims=dims) assert_(len(c_ops) == 3) assert_allclose(c_ops[1](0).full(), tensor([qeye(2), a, qeye(2)]).full()) # no relaxation dims = [2] * 2 relnoise = RelaxationNoise(t1=None, t2=None) systematic_noise = Pulse(None, None, label="system") pulses, systematic_noise = relnoise.get_noisy_pulses( dims=dims, systematic_noise=systematic_noise) noisy_qu, c_ops = systematic_noise.get_noisy_qobjevo(dims=dims) assert_(len(c_ops) == 0) # only t2 relnoise = RelaxationNoise(t1=None, t2=[0.2, 0.7]) systematic_noise = Pulse(None, None, label="system") pulses, systematic_noise = relnoise.get_noisy_pulses( dims=dims, systematic_noise=systematic_noise) noisy_qu, c_ops = systematic_noise.get_noisy_qobjevo(dims=dims) assert_(len(c_ops) == 2) # t1+t2 and systematic_noise = None relnoise = RelaxationNoise(t1=[1., 1.], t2=[0.5, 0.5]) pulses, systematic_noise = relnoise.get_noisy_pulses(dims=dims) noisy_qu, c_ops = systematic_noise.get_noisy_qobjevo(dims=dims) assert_(len(c_ops) == 4)
def test_pulse_constructor(self): """ Test for creating empty Pulse, Pulse with constant coefficients etc. """ coeff = np.array([0.1, 0.2, 0.3, 0.4]) tlist = np.array([0., 1., 2., 3.]) ham = sigmaz() # Special ways of initializing pulse pulse2 = Pulse(sigmax(), 0, tlist, True) assert_allclose( pulse2.get_ideal_qobjevo(2)(0).full(), tensor(sigmax(), identity(2)).full()) pulse3 = Pulse(sigmay(), 0) assert_allclose(pulse3.get_ideal_qobjevo(2)(0).norm(), 0.) pulse4 = Pulse(None, None) # Dummy empty ham assert_allclose(pulse4.get_ideal_qobjevo(2)(0).norm(), 0.) tlist_noise = np.array([1., 2.5, 3.]) coeff_noise = np.array([0.5, 0.1, 0.5]) tlist_noise2 = np.array([0.5, 2, 3.]) coeff_noise2 = np.array([0.1, 0.2, 0.3]) # Pulse with different dims random_qobj = Qobj(np.random.random((3, 3))) pulse5 = Pulse(sigmaz(), 1, tlist, True) pulse5.add_coherent_noise(sigmay(), 1, tlist_noise, coeff_noise) pulse5.add_lindblad_noise(random_qobj, 0, tlist=tlist_noise2, coeff=coeff_noise2) qu, c_ops = pulse5.get_noisy_qobjevo(dims=[3, 2]) if parse_version(qutip.__version__) >= parse_version('5.dev'): expected = QobjEvo([ tensor([identity(3), sigmaz()]), [tensor([identity(3), sigmay()]), coeff_noise] ], tlist=tlist_noise, order=0) else: expected = QobjEvo([ tensor([identity(3), sigmaz()]), [tensor([identity(3), sigmay()]), coeff_noise] ], tlist=tlist_noise, args={"_step_func_coeff": True}) _compare_qobjevo(qu, expected, 0, 3)
def test_coherent_noise(self): """ Test for pulse genration with coherent noise. """ coeff = np.array([0.1, 0.2, 0.3, 0.4]) tlist = np.array([0., 1., 2., 3.]) ham = sigmaz() pulse1 = Pulse(ham, 1, tlist, coeff) # Add coherent noise with the same tlist pulse1.add_coherent_noise(sigmay(), 0, tlist, coeff) assert_allclose( pulse1.get_ideal_qobjevo(2)(0).full(), tensor(identity(2), sigmaz()).full() * 0.1) assert_(len(pulse1.coherent_noise) == 1) noise_qu, c_ops = pulse1.get_noisy_qobjevo(2) assert_allclose(c_ops, []) assert_allclose(pulse1.get_full_tlist(), np.array([0., 1., 2., 3.]))
def testNoisyPulse(self): """ Test for lindblad noise and different tlist """ coeff = np.array([0.1, 0.2, 0.3, 0.4]) tlist = np.array([0., 1., 2., 3.]) ham = sigmaz() pulse1 = Pulse(ham, 1, tlist, coeff) # Add coherent noise and lindblad noise with different tlist pulse1.spline_kind = "step_func" tlist_noise = np.array([1., 2.5, 3.]) coeff_noise = np.array([0.5, 0.1, 0.5]) pulse1.add_coherent_noise(sigmay(), 0, tlist_noise, coeff_noise) tlist_noise2 = np.array([0.5, 2, 3.]) coeff_noise2 = np.array([0.1, 0.2, 0.3]) pulse1.add_lindblad_noise(sigmax(), 1, coeff=True) pulse1.add_lindblad_noise(sigmax(), 0, tlist=tlist_noise2, coeff=coeff_noise2) assert_allclose( pulse1.get_ideal_qobjevo(2).ops[0].qobj, tensor(identity(2), sigmaz())) noise_qu, c_ops = pulse1.get_noisy_qobjevo(2) assert_allclose(noise_qu.tlist, np.array([0., 0.5, 1., 2., 2.5, 3.])) for ele in noise_qu.ops: if ele.qobj == tensor(identity(2), sigmaz()): assert_allclose(ele.coeff, np.array([0.1, 0.1, 0.2, 0.3, 0.3, 0.4])) elif ele.qobj == tensor(sigmay(), identity(2)): assert_allclose(ele.coeff, np.array([0., 0., 0.5, 0.5, 0.1, 0.5])) for c_op in c_ops: if len(c_op.ops) == 0: assert_allclose(c_ops[0].cte, tensor(identity(2), sigmax())) else: assert_allclose(c_ops[1].ops[0].qobj, tensor(sigmax(), identity(2))) assert_allclose(c_ops[1].tlist, np.array([0., 0.5, 1., 2., 2.5, 3.])) assert_allclose(c_ops[1].ops[0].coeff, np.array([0., 0.1, 0.1, 0.2, 0.2, 0.3]))
def TestCoherentNoise(): """ Test for pulse genration with coherent noise. """ coeff = np.array([0.1, 0.2, 0.3, 0.4]) tlist = np.array([0., 1., 2., 3.]) ham = sigmaz() pulse1 = Pulse(ham, 1, tlist, coeff) # Add coherent noise with the same tlist pulse1.add_coherent_noise(sigmay(), 0, tlist, coeff) assert_allclose( pulse1.get_ideal_qobjevo(2).ops[0].qobj, tensor(identity(2), sigmaz())) assert_(len(pulse1.coherent_noise) == 1) noise_qu, c_ops = pulse1.get_noisy_qobjevo(2) assert_allclose(c_ops, []) assert_allclose(noise_qu.tlist, np.array([0., 1., 2., 3.])) qobj_list = [ele.qobj for ele in noise_qu.ops] assert_(tensor(identity(2), sigmaz()) in qobj_list) assert_(tensor(sigmay(), identity(2)) in qobj_list) for ele in noise_qu.ops: assert_allclose(ele.coeff, coeff)
def test_noisy_pulse(self): """ Test for lindblad noise and different tlist """ coeff = np.array([0.1, 0.2, 0.3, 0.4]) tlist = np.array([0., 1., 2., 3.]) ham = sigmaz() pulse1 = Pulse(ham, 1, tlist, coeff) # Add coherent noise and lindblad noise with different tlist pulse1.spline_kind = "step_func" tlist_noise = np.array([0., 1., 2.5, 3.]) coeff_noise = np.array([0., 0.5, 0.1, 0.5]) pulse1.add_coherent_noise(sigmay(), 0, tlist_noise, coeff_noise) tlist_noise2 = np.array([0., 0.5, 2, 3.]) coeff_noise2 = np.array([0., 0.1, 0.2, 0.3]) pulse1.add_lindblad_noise(sigmax(), 1, coeff=True) pulse1.add_lindblad_noise(sigmax(), 0, tlist=tlist_noise2, coeff=coeff_noise2) assert_allclose( pulse1.get_ideal_qobjevo(2)(0).full(), tensor(identity(2), sigmaz()).full() * 0.1) noise_qu, c_ops = pulse1.get_noisy_qobjevo(2) assert_allclose(pulse1.get_full_tlist(), np.array([0., 0.5, 1., 2., 2.5, 3.])) if parse_version(qutip.__version__) >= parse_version('5.dev'): expected = QobjEvo([[ tensor(identity(2), sigmaz()), np.array([0.1, 0.1, 0.2, 0.3, 0.3, 0.4]) ], [ tensor(sigmay(), identity(2)), np.array([0., 0., 0.5, 0.5, 0.1, 0.5]) ]], tlist=np.array([0., 0.5, 1., 2., 2.5, 3.]), order=0) else: expected = QobjEvo([[ tensor(identity(2), sigmaz()), np.array([0.1, 0.1, 0.2, 0.3, 0.3, 0.4]) ], [ tensor(sigmay(), identity(2)), np.array([0., 0., 0.5, 0.5, 0.1, 0.5]) ]], tlist=np.array([0., 0.5, 1., 2., 2.5, 3.]), args={"_step_func_coeff": True}) _compare_qobjevo(noise_qu, expected, 0, 3) for c_op in c_ops: try: isconstant = c_op.isconstant except AttributeError: isconstant = (len(c_op.ops) == 0) if isconstant: assert_allclose( c_op(0).full(), tensor(identity(2), sigmax()).full()) else: if parse_version(qutip.__version__) >= parse_version('5.dev'): expected = QobjEvo([ tensor(sigmax(), identity(2)), np.array([0., 0.1, 0.1, 0.2, 0.2, 0.3]) ], tlist=np.array( [0., 0.5, 1., 2., 2.5, 3.]), order=0) else: expected = QobjEvo([ tensor(sigmax(), identity(2)), np.array([0., 0.1, 0.1, 0.2, 0.2, 0.3]) ], tlist=np.array( [0., 0.5, 1., 2., 2.5, 3.]), args={"_step_func_coeff": True}) _compare_qobjevo(c_op, expected, 0, 3)