def r8mat_is_inverse ( n, a, b ):

#*****************************************************************************80
#
## R8MAT_IS_INVERSE measures the error in a matrix inverse.
#
#  Discussion:
#
#    An R8MAT is a matrix of real values.
#
#    This routine returns the sum of the Frobenius norms of
#      A * B - I and B * A - I.
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license.
#
#  Modified:
#
#    23 March 2015
#
#  Author:
#
#    John Burkardt
#
#  Parameters:
#
#    Input, integer N, the order of the matrix.
#
#    Input, real A(N,N), the matrix.
#
#    Input, real B(M,N), the inverse matrix.
#
#    Output, real VALUE, the Frobenius norm
#    of the difference matrices A * B - I and B * A - I.
#
  from identity import identity
  from r8mat_mm import r8mat_mm
  from r8mat_sub import r8mat_sub
  from r8mat_norm_fro import r8mat_norm_fro

  ab = r8mat_mm ( n, n, n, a, b )
  ba = r8mat_mm ( n, n, n, b, a )
  id = identity ( n, n )
  d1 = r8mat_sub ( n, n, ab, id )
  d2 = r8mat_sub ( n, n, ba, id )
 
  value = r8mat_norm_fro ( n, n, d1 ) \
        + r8mat_norm_fro ( n, n, d2 )

  return value
예제 #2
0
def r8mat_is_solution(m, n, k, a, x, b):

    #*****************************************************************************80
    #
    ## R8MAT_IS_SOLUTION measures the error in a linear system solution.
    #
    #  Discussion:
    #
    #    An R8MAT is a matrix of real values.
    #
    #    The system matrix A is an M x N matrix.
    #    It is not required that A be invertible.
    #
    #    The solution vector X is actually allowed to be an N x K matrix.
    #
    #    The right hand side "vector" B is actually allowed to be an M x K matrix.
    #
    #    This routine simply returns the Frobenius norm of the M x K matrix:
    #    A * X - B.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    02 March 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    #  Parameters:
    #
    #    Input, integer M, N, K, the order of the matrices.
    #
    #    Input, real A(M,N), X(N,K), B(M,K), the matrices.
    #
    #    Output, real VALUE, the Frobenius norm
    #    of the difference matrix A * X - B, which would be exactly zero
    #    if X was the "solution" of the linear system.
    #
    from r8mat_norm_fro import r8mat_norm_fro
    from r8mat_mm import r8mat_mm
    from r8mat_sub import r8mat_sub
    #
    #  AX = A*X
    #
    ax = r8mat_mm(m, n, k, a, x)
    #
    #  AXMB = AX-B.
    #
    axmb = r8mat_sub(m, k, ax, b)
    #
    #  Value = ||AX-B|\
    #
    value = r8mat_norm_fro(m, k, axmb)

    return value
def r8mat_is_solution ( m, n, k, a, x, b ):

#*****************************************************************************80
#
## R8MAT_IS_SOLUTION measures the error in a linear system solution.
#
#  Discussion:
#
#    An R8MAT is a matrix of real values.
#
#    The system matrix A is an M x N matrix.
#    It is not required that A be invertible.
#
#    The solution vector X is actually allowed to be an N x K matrix.
#
#    The right hand side "vector" B is actually allowed to be an M x K matrix.
#
#    This routine simply returns the Frobenius norm of the M x K matrix:
#    A * X - B.
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license.
#
#  Modified:
#
#    02 March 2015
#
#  Author:
#
#    John Burkardt
#
#  Parameters:
#
#    Input, integer M, N, K, the order of the matrices.
#
#    Input, real A(M,N), X(N,K), B(M,K), the matrices.
#
#    Output, real VALUE, the Frobenius norm
#    of the difference matrix A * X - B, which would be exactly zero
#    if X was the "solution" of the linear system.
#
  from r8mat_norm_fro import r8mat_norm_fro
  from r8mat_mm import r8mat_mm
  from r8mat_sub import r8mat_sub
#
#  AX = A*X
#
  ax = r8mat_mm ( m, n, k, a, x )
#
#  AXMB = AX-B.
#
  axmb = r8mat_sub ( m, k, ax, b )
#
#  Value = ||AX-B|\
#
  value = r8mat_norm_fro ( m, k, axmb )

  return value
예제 #4
0
def r8mat_is_plu ( m, n, a, p, l, u ):

#*****************************************************************************80
#
## R8MAT_IS_PLU measures the error in a PLU factorization.
#
#  Discussion:
#
#    An R8MAT is a matrix of real values.
#
#    This routine computes the Frobenius norm of
#
#      A - P * L * U
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license.
#
#  Modified:
#
#    23 March 2015
#
#  Author:
#
#    John Burkardt
#
#  Parameters:
#
#    Input, integer M, N, the order of the matrix.
#
#    Input, real A(M,N), the matrix.
#
#    Input, real P(M,M), L(M,M), U(M,N), the PLU factors.
#
#    Output, real VALUE, the Frobenius norm
#    of the difference matrix A - P * L * U.
#
  from r8mat_mm import r8mat_mm
  from r8mat_sub import r8mat_sub
  from r8mat_norm_fro import r8mat_norm_fro

  lu = r8mat_mm ( m, m, n, l, u )
  plu = r8mat_mm ( m, m, n, p, lu )

  d = r8mat_sub ( m, n, a, plu )
 
  value = r8mat_norm_fro ( m, n, d )

  return value