def r8poly_add_test(): # *****************************************************************************80 # ## R8POLY_ADD_TEST tests R8POLY_ADD. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 May 2015 # # Author: # # John Burkardt # import numpy as np from r8poly_degree import r8poly_degree from r8poly_print import r8poly_print print "" print "R8POLY_ADD_TEST" print " R8POLY_ADD adds two R8POLY's." na = 5 a = np.array([0.0, 1.1, 2.2, 3.3, 4.4, 5.5]) nb = 5 b = np.array([1.0, -2.1, 7.2, 8.3, 0.0, -5.5]) c = r8poly_add(na, a, nb, b) r8poly_print(na, a, " Polynomial A:") r8poly_print(nb, b, " Polynomial B:") nc = max(na, nb) nc2 = r8poly_degree(nc, c) r8poly_print(nc2, c, " Polynomial C = A+B:") # # Terminate. # print "" print "R8POLY_ADD_TEST:" print " Normal end of execution." return
def r8poly_add_test(): #*****************************************************************************80 # ## R8POLY_ADD_TEST tests R8POLY_ADD. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 May 2015 # # Author: # # John Burkardt # import numpy as np from r8poly_degree import r8poly_degree from r8poly_print import r8poly_print print '' print 'R8POLY_ADD_TEST' print ' R8POLY_ADD adds two R8POLY\'s.' na = 5 a = np.array([0.0, 1.1, 2.2, 3.3, 4.4, 5.5]) nb = 5 b = np.array([1.0, -2.1, 7.2, 8.3, 0.0, -5.5]) c = r8poly_add(na, a, nb, b) r8poly_print(na, a, ' Polynomial A:') r8poly_print(nb, b, ' Polynomial B:') nc = max(na, nb) nc2 = r8poly_degree(nc, c) r8poly_print(nc2, c, ' Polynomial C = A+B:') # # Terminate. # print '' print 'R8POLY_ADD_TEST:' print ' Normal end of execution.' return
def r8poly_div(na, a, nb, b): #*****************************************************************************80 # ## R8POLY_DIV computes the quotient and remainder of two polynomials. # # Discussion: # # The polynomials are assumed to be stored in power sum form. # # The power sum form of a polynomial is: # # p(x) = a(0) + a(1) * x + ... + a(n-1) * x^(n-1) + a(n) * x^(n) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 May 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer NA, the dimension of A. # # Input, real A(1:NA+1), the coefficients of the polynomial to be divided. # # Input, integer NB, the dimension of B. # # Input, real B(1:NB+1), the coefficients of the divisor polynomial. # # Output, integer NQ, the degree of Q. # If the divisor polynomial is zero, NQ is returned as -1. # # Output, real Q(1:NA-NB+1), contains the quotient of A/B. # If A and B have full degree, Q should be dimensioned Q(0:NA-NB). # In any case, Q(0:NA) should be enough. # # Output, integer NR, the degree of R. # If the divisor polynomial is zero, NR is returned as -1. # # Output, real R(1:NB), contains the remainder of A/B. # If B has full degree, R should be dimensioned R(0:NB-1). # Otherwise, R will actually require less space. # import numpy as np from r8poly_degree import r8poly_degree na2 = r8poly_degree(na, a) nb2 = r8poly_degree(nb, b) if (b[nb2] == 0.0): nq = -1 nr = -1 return nq, q, nr, r nq = na2 - nb2 q = np.zeros(nq + 1) for i in range(nq, -1, -1): q[i] = a[i + nb2] / b[nb2] a[i + nb2] = 0.0 for j in range(0, nb2): a[i + j] = a[i + j] - q[i] * b[j] nr = nb2 - 1 r = np.zeros(nr + 1) for i in range(0, nr + 1): r[i] = a[i] return nq, q, nr, r
def r8poly_div ( na, a, nb, b ): #*****************************************************************************80 # ## R8POLY_DIV computes the quotient and remainder of two polynomials. # # Discussion: # # The polynomials are assumed to be stored in power sum form. # # The power sum form of a polynomial is: # # p(x) = a(0) + a(1) * x + ... + a(n-1) * x^(n-1) + a(n) * x^(n) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 May 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer NA, the dimension of A. # # Input, real A(1:NA+1), the coefficients of the polynomial to be divided. # # Input, integer NB, the dimension of B. # # Input, real B(1:NB+1), the coefficients of the divisor polynomial. # # Output, integer NQ, the degree of Q. # If the divisor polynomial is zero, NQ is returned as -1. # # Output, real Q(1:NA-NB+1), contains the quotient of A/B. # If A and B have full degree, Q should be dimensioned Q(0:NA-NB). # In any case, Q(0:NA) should be enough. # # Output, integer NR, the degree of R. # If the divisor polynomial is zero, NR is returned as -1. # # Output, real R(1:NB), contains the remainder of A/B. # If B has full degree, R should be dimensioned R(0:NB-1). # Otherwise, R will actually require less space. # import numpy as np from r8poly_degree import r8poly_degree na2 = r8poly_degree ( na, a ) nb2 = r8poly_degree ( nb, b ) if ( b[nb2] == 0.0 ): nq = -1 nr = -1 return nq, q, nr, r nq = na2 - nb2 q = np.zeros ( nq + 1 ) for i in range ( nq, -1, -1 ): q[i] = a[i+nb2] / b[nb2] a[i+nb2] = 0.0 for j in range ( 0, nb2 ): a[i+j] = a[i+j] - q[i] * b[j] nr = nb2 - 1 r = np.zeros ( nr + 1 ) for i in range ( 0, nr + 1 ): r[i] = a[i] return nq, q, nr, r
def r8poly_print ( n, a, title ): #*****************************************************************************80 # ## R8POLY_PRINT prints out a polynomial. # # Discussion: # # The power sum form is: # # p(x) = a(0) + a(1) * x + ... + a(n-1) * x^(n-1) + a(n) * x^(n) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 May 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the dimension of A. # # Input, real A[0:N], the polynomial coefficients. # A(1) is the constant term and # A(N+1) is the coefficient of X^N. # # Input, character TITLE(*), an optional title. # from r8poly_degree import r8poly_degree if ( 0 < len ( title ) ): print '' print title print '' n = r8poly_degree ( n, a ) if ( a[n] < 0.0 ): plus_minus = '-' else: plus_minus = ' ' mag = abs ( a[n] ) if ( 2 <= n ): print ' p(x) = %c%14f * x^%d' % ( plus_minus, mag, n ) elif ( n == 1 ): print ' p(x) = %c%14f * x' % ( plus_minus, mag ) elif ( n == 0 ): print ' p(x) = %c%14f' % ( plus_minus, mag ) for i in range ( n - 1, -1, -1 ): if ( a[i] < 0.0 ): plus_minus = '-' else: plus_minus = '+' mag = abs ( a[i] ) if ( mag != 0.0 ): if ( 2 <= i ): print ' %c%14f * x^%d' % ( plus_minus, mag, i ) elif ( i == 1 ): print ' %c%14f * x' % ( plus_minus, mag ) elif ( i == 0 ): print ' %c%14f' % ( plus_minus, mag ) return
def r8poly_print(m, a, title): #*****************************************************************************80 # ## R8POLY_PRINT prints out a polynomial. # # Discussion: # # The power sum form is: # # p(x) = a(0) + a(1) * x + ... + a(m-1) * x^(m-1) + a(m) * x^(m) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, the nominal degree of the polynomial. # # Input, real A[0:M], the polynomial coefficients. # A[0] is the constant term and # A[M] is the coefficient of X^M. # # Input, string TITLE, a title. # from r8poly_degree import r8poly_degree print '' print title print '' m2 = r8poly_degree(m, a) if (a[m2] < 0.0): plus_minus = '-' else: plus_minus = ' ' mag = abs(a[m2]) if (2 <= m2): print ' p(x) = %c %g * x^%d' % (plus_minus, mag, m2) elif (m2 == 1): print ' p(x) = %c %g * x' % (plus_minus, mag) elif (m2 == 0): print ' p(x) = %c %g' % (plus_minus, mag) for i in range(m2 - 1, -1, -1): if (a[i] < 0.0): plus_minus = '-' else: plus_minus = '+' mag = abs(a[i]) if (mag != 0.0): if (2 <= i): print ' %c %g * x^%d' % (plus_minus, mag, i) elif (i == 1): print ' %c %g * x' % (plus_minus, mag) elif (i == 0): print ' %c %g' % (plus_minus, mag)
def r8poly_print ( m, a, title ): #*****************************************************************************80 # ## R8POLY_PRINT prints out a polynomial. # # Discussion: # # The power sum form is: # # p(x) = a(0) + a(1) * x + ... + a(m-1) * x^(m-1) + a(m) * x^(m) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, the nominal degree of the polynomial. # # Input, real A[0:M], the polynomial coefficients. # A[0] is the constant term and # A[M] is the coefficient of X^M. # # Input, string TITLE, a title. # from r8poly_degree import r8poly_degree print '' print title print '' m2 = r8poly_degree ( m, a ) if ( a[m2] < 0.0 ): plus_minus = '-' else: plus_minus = ' ' mag = abs ( a[m2] ) if ( 2 <= m2 ): print ' p(x) = %c %g * x^%d' % ( plus_minus, mag, m2 ) elif ( m2 == 1 ): print ' p(x) = %c %g * x' % ( plus_minus, mag ) elif ( m2 == 0 ): print ' p(x) = %c %g' % ( plus_minus, mag ) for i in range ( m2 - 1, -1, -1 ): if ( a[i] < 0.0 ): plus_minus = '-' else: plus_minus = '+' mag = abs ( a[i] ) if ( mag != 0.0 ): if ( 2 <= i ): print ' %c %g * x^%d' % ( plus_minus, mag, i ) elif ( i == 1 ): print ' %c %g * x' % ( plus_minus, mag ) elif ( i == 0 ): print ' %c %g' % ( plus_minus, mag )