예제 #1
0
def r8poly_dif_test():

    #*****************************************************************************80
    #
    ## R8POLY_DIF_TEST tests R8POLY_DIF.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    30 May 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    import numpy as np
    from r8poly_print import r8poly_print

    test_num = 2

    print ''
    print 'R8POLY_DIF_TEST'
    print '  R8POLY_DIF computes derivatives of an R8POLY.'
    #
    #  1: Differentiate X^3 + 2*X^2 - 5*X - 6 once.
    #  2: Differentiate X^4 + 3*X^3 + 2*X^2 - 2  3 times.
    #
    for test in range(0, 2):

        if (test == 0):
            na = 3
            d = 1
            a = np.array([-6.0, -5.0, 2.0, 1.0])
        elif (test == 1):
            na = 4
            d = 3
            a = np.array([-2.0, 5.0, 2.0, 3.0, 1.0])

        r8poly_print(na, a, '  The polynomial A:')

        print ''
        print '  Differentiate A %d times.' % (d)

        b = r8poly_dif(na, a, d)

        r8poly_print(na - d, b, '  The derivative, B:')


#
#  Terminate.
#
    print ''
    print 'R8POLY_DIF_TEST:'
    print '  Normal end of execution.'

    return
예제 #2
0
def r8poly_degree_test ( ):

#*****************************************************************************80
#
## R8POLY_DEGREE_TEST tests R8POLY_DEGREE.
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license.
#
#  Modified:
#
#    05 January 2015
#
#  Author:
#
#    John Burkardt
#
  import numpy as np
  from r8poly_print import r8poly_print

  c1 = np.array ( [ 1.0, 2.0, 3.0, 4.0 ] )
  c2 = np.array ( [ 1.0, 2.0, 3.0, 0.0 ] )
  c3 = np.array ( [ 1.0, 2.0, 0.0, 4.0 ] )
  c4 = np.array ( [ 1.0, 0.0, 0.0, 0.0 ] )
  c5 = np.array ( [ 0.0, 0.0, 0.0, 0.0 ] )

  print ''
  print 'R8POLY_DEGREE_TEST'
  print '  R8POLY_DEGREE determines the degree of an R8POLY.'

  m = 3

  r8poly_print ( m, c1, '  The R8POLY:' )
  d = r8poly_degree ( m, c1 )
  print '  Dimensioned degree = %d,  Actual degree = %d' % ( m, d )

  r8poly_print ( m, c2, '  The R8POLY:' )
  d = r8poly_degree ( m, c2 )
  print '  Dimensioned degree = %d,  Actual degree = %d' % ( m, d )

  r8poly_print ( m, c3, '  The R8POLY:' )
  d = r8poly_degree ( m, c3 )
  print '  Dimensioned degree = %d,  Actual degree = %d' % ( m, d )

  r8poly_print ( m, c4, '  The R8POLY:' )
  d = r8poly_degree ( m, c4 )
  print '  Dimensioned degree = %d,  Actual degree = %d' % ( m, d )

  r8poly_print ( m, c5, '  The R8POLY:' )
  d = r8poly_degree ( m, c5 )
  print '  Dimensioned degree = %d,  Actual degree = %d' % ( m, d )

  print ''
  print 'R8POLY_DEGREE_TEST:'
  print '  Normal end of execution.'

  return
예제 #3
0
def r8poly_degree_test():

    #*****************************************************************************80
    #
    ## R8POLY_DEGREE_TEST tests R8POLY_DEGREE.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    05 January 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    import numpy as np
    from r8poly_print import r8poly_print

    c1 = np.array([1.0, 2.0, 3.0, 4.0])
    c2 = np.array([1.0, 2.0, 3.0, 0.0])
    c3 = np.array([1.0, 2.0, 0.0, 4.0])
    c4 = np.array([1.0, 0.0, 0.0, 0.0])
    c5 = np.array([0.0, 0.0, 0.0, 0.0])

    print ''
    print 'R8POLY_DEGREE_TEST'
    print '  R8POLY_DEGREE determines the degree of an R8POLY.'

    m = 3

    r8poly_print(m, c1, '  The R8POLY:')
    d = r8poly_degree(m, c1)
    print '  Dimensioned degree = %d,  Actual degree = %d' % (m, d)

    r8poly_print(m, c2, '  The R8POLY:')
    d = r8poly_degree(m, c2)
    print '  Dimensioned degree = %d,  Actual degree = %d' % (m, d)

    r8poly_print(m, c3, '  The R8POLY:')
    d = r8poly_degree(m, c3)
    print '  Dimensioned degree = %d,  Actual degree = %d' % (m, d)

    r8poly_print(m, c4, '  The R8POLY:')
    d = r8poly_degree(m, c4)
    print '  Dimensioned degree = %d,  Actual degree = %d' % (m, d)

    r8poly_print(m, c5, '  The R8POLY:')
    d = r8poly_degree(m, c5)
    print '  Dimensioned degree = %d,  Actual degree = %d' % (m, d)

    print ''
    print 'R8POLY_DEGREE_TEST:'
    print '  Normal end of execution.'

    return
예제 #4
0
def r8poly_dif_test ( ):

#*****************************************************************************80
#
## R8POLY_DIF_TEST tests R8POLY_DIF.
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license. 
#
#  Modified:
#
#    30 May 2015
#
#  Author:
#
#    John Burkardt
#
  import numpy as np
  from r8poly_print import r8poly_print

  test_num = 2

  print ''
  print 'R8POLY_DIF_TEST'
  print '  R8POLY_DIF computes derivatives of an R8POLY.'
#
#  1: Differentiate X^3 + 2*X^2 - 5*X - 6 once.
#  2: Differentiate X^4 + 3*X^3 + 2*X^2 - 2  3 times.
#
  for test in range ( 0, 2 ):

    if ( test == 0 ):
      na = 3
      d = 1
      a = np.array ( [ -6.0, -5.0, 2.0, 1.0 ] )
    elif ( test == 1 ):
      na = 4
      d = 3
      a = np.array ( [ -2.0, 5.0, 2.0, 3.0, 1.0 ] )

    r8poly_print ( na, a, '  The polynomial A:' )

    print ''
    print '  Differentiate A %d times.' % ( d )

    b = r8poly_dif ( na, a, d )
 
    r8poly_print ( na - d, b, '  The derivative, B:' )
#
#  Terminate.
#
  print ''
  print 'R8POLY_DIF_TEST:'
  print '  Normal end of execution.'

  return
예제 #5
0
def r8poly_value_horner_test():

    #*****************************************************************************80
    #
    ## R8POLY_VALUE_HORNER_TEST tests R8POLY_VALUE_HORNER.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    04 March 2016
    #
    #  Author:
    #
    #    John Burkardt
    #
    import numpy as np
    import platform
    from r8poly_print import r8poly_print

    m = 4
    n = 16
    c = np.array([24.0, -50.0, +35.0, -10.0, 1.0])

    print('')
    print('R8POLY_VALUE_HORNER_TEST')
    print('  Python version: %s' % (platform.python_version()))
    print('  R8POLY_VALUE_HORNER evaluates a polynomial at a point')
    print('  using Horners method.')

    r8poly_print(m, c, '  The polynomial coefficients:')

    x_lo = 0.0
    x_hi = 5.0
    x = np.linspace(x_lo, x_hi, n)

    print('')
    print('   I    X    P(X)')
    print('')

    for i in range(0, n):
        p = r8poly_value_horner(m, c, x[i])
        print('  %2d  %8.4f  %14.6g' % (i, x[i], p))


#
#  Terminate.
#
    print('')
    print('R8POLY_VALUE_HORNER_TEST:')
    print('  Normal end of execution.')
    return
def r8poly_value_horner_test():

    # *****************************************************************************80
    #
    ## R8POLY_VALUE_HORNER_TEST tests R8POLY_VALUE_HORNER.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    05 January 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    import numpy as np
    from r8poly_print import r8poly_print
    from r8vec_linspace import r8vec_linspace

    m = 4
    n = 16
    c = np.array([24.0, -50.0, +35.0, -10.0, 1.0])

    print ""
    print "R8POLY_VALUE_HORNER_TEST"
    print "  R8POLY_VALUE_HORNER evaluates a polynomial at a point"
    print "  using Horners method."

    r8poly_print(m, c, "  The polynomial coefficients:")

    x_lo = 0.0
    x_hi = 5.0
    x = r8vec_linspace(n, x_lo, x_hi)

    print ""
    print "   I    X    P(X)"
    print ""

    for i in range(0, n):
        p = r8poly_value_horner(m, c, x[i])
        print "  %2d  %8.4f  %14.6g" % (i, x[i], p)

    print ""
    print "R8POLY_VALUE_HORNER_TEST:"
    print "  Normal end of execution."

    return
def r8poly_value_horner_test():

    #*****************************************************************************80
    #
    ## R8POLY_VALUE_HORNER_TEST tests R8POLY_VALUE_HORNER.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    05 January 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    import numpy as np
    from r8poly_print import r8poly_print
    from r8vec_linspace import r8vec_linspace

    m = 4
    n = 16
    c = np.array([24.0, -50.0, +35.0, -10.0, 1.0])

    print ''
    print 'R8POLY_VALUE_HORNER_TEST'
    print '  R8POLY_VALUE_HORNER evaluates a polynomial at a point'
    print '  using Horners method.'

    r8poly_print(m, c, '  The polynomial coefficients:')

    x_lo = 0.0
    x_hi = 5.0
    x = r8vec_linspace(n, x_lo, x_hi)

    print ''
    print '   I    X    P(X)'
    print ''

    for i in range(0, n):
        p = r8poly_value_horner(m, c, x[i])
        print '  %2d  %8.4f  %14.6g' % (i, x[i], p)

    print ''
    print 'R8POLY_VALUE_HORNER_TEST:'
    print '  Normal end of execution.'

    return
예제 #8
0
def roots_to_r8poly_test():

    #*****************************************************************************80
    #
    ## ROOTS_TO_R8POLY_TEST tests ROOTS_TO_R8POLY.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    11 March 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    import numpy as np
    from r8poly_print import r8poly_print
    from r8vec_print import r8vec_print

    n = 5

    x = np.array ( [ \
     [  1.0 ], \
     [ -4.0 ], \
     [  3.0 ], \
     [  0.0 ], \
     [  3.0 ] ] )

    print ''
    print 'ROOTS_TO_R8POLY_TEST'
    print '  ROOTS_TO_R8POLY is given N real roots,'
    print '  and constructs the coefficient vector'
    print '  of the corresponding polynomial.'

    r8vec_print(n, x, '  N real roots:')

    c = roots_to_r8poly(n, x)

    r8poly_print(n, c, '  The polynomial:')

    print ''
    print 'ROOTS_TO_R8POLY_TEST:'
    print '  Normal end of execution.'

    return
예제 #9
0
def roots_to_r8poly_test():

    # *****************************************************************************80
    #
    ## ROOTS_TO_R8POLY_TEST tests ROOTS_TO_R8POLY.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    11 March 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    import numpy as np
    from r8poly_print import r8poly_print
    from r8vec_print import r8vec_print

    n = 5

    x = np.array([[1.0], [-4.0], [3.0], [0.0], [3.0]])

    print ""
    print "ROOTS_TO_R8POLY_TEST"
    print "  ROOTS_TO_R8POLY is given N real roots,"
    print "  and constructs the coefficient vector"
    print "  of the corresponding polynomial."

    r8vec_print(n, x, "  N real roots:")

    c = roots_to_r8poly(n, x)

    r8poly_print(n, c, "  The polynomial:")

    print ""
    print "ROOTS_TO_R8POLY_TEST:"
    print "  Normal end of execution."

    return
예제 #10
0
def r8poly_degree_test ( ):

#*****************************************************************************80
#
## R8POLY_DEGREE_TEST tests R8POLY_DEGREE.
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license. 
#
#  Modified:
#
#    26 May 2015
#
#  Author:
#
#    John Burkardt
#
  import numpy as np
  from r8poly_print import r8poly_print

  print ''
  print 'R8POLY_DEGREE_TEST'
  print '  R8POLY_DEGREE returns the degree of an R8POLY.'

  n = 10
  a = np.array ( [ 0.0, 1.1, 0.0, 3.3, 4.4, 0.0, 6.6, 7.7, 0.0, 0.0, 0.0 ] )

  r8poly_print ( n, a, '  The polynomial:' )

  degree = r8poly_degree ( n, a )

  print ''
  print '  The polynomial degree is %d' % ( degree )
#
#  Terminate.
#
  print ''
  print 'R8POLY_DEGREE_TEST:'
  print '  Normal end of execution.'

  return
예제 #11
0
def r8poly_degree_test():

    #*****************************************************************************80
    #
    ## R8POLY_DEGREE_TEST tests R8POLY_DEGREE.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    26 May 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    import numpy as np
    from r8poly_print import r8poly_print

    print ''
    print 'R8POLY_DEGREE_TEST'
    print '  R8POLY_DEGREE returns the degree of an R8POLY.'

    n = 10
    a = np.array([0.0, 1.1, 0.0, 3.3, 4.4, 0.0, 6.6, 7.7, 0.0, 0.0, 0.0])

    r8poly_print(n, a, '  The polynomial:')

    degree = r8poly_degree(n, a)

    print ''
    print '  The polynomial degree is %d' % (degree)
    #
    #  Terminate.
    #
    print ''
    print 'R8POLY_DEGREE_TEST:'
    print '  Normal end of execution.'

    return
예제 #12
0
def r8poly_mul_test():

    #*****************************************************************************80
    #
    ## R8POLY_MUL_TEST tests R8POLY_MUL.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    29 May 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    import numpy as np
    from r8poly_print import r8poly_print

    ntest = 2

    print ''
    print 'R8POLY_MUL_TEST'
    print '  R8POLY_MUL multiplies two polynomials.'
    #
    #  1: Multiply (1+X) times (1-X).  Answer is 1-X^2.
    #  2: Multiply (1+2*X+3*X^2) by (1-2*X). Answer is 1 + 0*X - X^2 - 6*X^3
    #
    for itest in range(0, ntest):

        if (itest == 0):
            na = 1
            a = np.array([1.0, 1.0])
            nb = 1
            b = np.array([1.0, -1.0])
        elif (itest == 1):
            na = 2
            a = np.array([1.0, 2.0, 3.0])
            nb = 1
            b = np.array([1.0, -2.0])

        c = r8poly_mul(na, a, nb, b)

        r8poly_print(na, a, '  The factor A:')

        r8poly_print(nb, b, '  The factor B:')

        r8poly_print(na + nb, c, '  The product C = A*B:')


#
#  Terminate.
#
    print ''
    print 'R8POLY_MUL_TEST:'
    print '  Normal end of execution.'

    return
예제 #13
0
def r8poly_mul_test ( ):

#*****************************************************************************80
#
## R8POLY_MUL_TEST tests R8POLY_MUL.
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license.
#
#  Modified:
#
#    29 May 2015
#
#  Author:
#
#    John Burkardt
#
  import numpy as np
  from r8poly_print import r8poly_print

  ntest = 2

  print ''
  print 'R8POLY_MUL_TEST'
  print '  R8POLY_MUL multiplies two polynomials.'
#
#  1: Multiply (1+X) times (1-X).  Answer is 1-X^2.
#  2: Multiply (1+2*X+3*X^2) by (1-2*X). Answer is 1 + 0*X - X^2 - 6*X^3
#
  for itest in range ( 0, ntest ):

    if ( itest == 0 ):
      na = 1
      a = np.array ( [ 1.0, 1.0 ] )
      nb = 1
      b = np.array ( [ 1.0, -1.0 ] )
    elif ( itest == 1 ):
      na = 2
      a = np.array ( [ 1.0, 2.0, 3.0 ] )
      nb = 1
      b = np.array ( [ 1.0, -2.0 ] )

    c = r8poly_mul ( na, a, nb, b )

    r8poly_print ( na, a, '  The factor A:' )

    r8poly_print ( nb, b, '  The factor B:' )

    r8poly_print ( na+nb, c, '  The product C = A*B:' )
#
#  Terminate.
#
  print ''
  print 'R8POLY_MUL_TEST:'
  print '  Normal end of execution.'

  return
예제 #14
0
def zernike_poly_coef_test ( ):

#*****************************************************************************80
#
## ZERNIKE_POLY_COEF_TEST tests ZERNIKE_POLY_COEF.
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license.
#
#  Modified:
#
#    27 February 2015
#
#  Author:
#
#    John Burkardt
#
  from r8poly_print import r8poly_print

  n = 5

  print ''
  print 'ZERNIKE_POLY_COEF_TEST'
  print '  ZERNIKE_POLY_COEF determines the Zernike'
  print '  polynomial coefficients.'

  for m in range ( 0, n + 1 ):

    c = zernike_poly_coef ( m, n )
 
    r8poly_print ( n, c, '  Zernike polynomial:' )

  print ''
  print 'ZERNIKE_POLY_COEF_TEST'
  print '  Normal end of execution.'

  return
예제 #15
0
def r8poly_add_test():

    #*****************************************************************************80
    #
    ## R8POLY_ADD_TEST tests R8POLY_ADD.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    28 May 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    import numpy as np
    from r8poly_degree import r8poly_degree
    from r8poly_print import r8poly_print

    print ''
    print 'R8POLY_ADD_TEST'
    print '  R8POLY_ADD adds two R8POLY\'s.'

    na = 5
    a = np.array([0.0, 1.1, 2.2, 3.3, 4.4, 5.5])
    nb = 5
    b = np.array([1.0, -2.1, 7.2, 8.3, 0.0, -5.5])

    c = r8poly_add(na, a, nb, b)

    r8poly_print(na, a, '  Polynomial A:')

    r8poly_print(nb, b, '  Polynomial B:')

    nc = max(na, nb)

    nc2 = r8poly_degree(nc, c)

    r8poly_print(nc2, c, '  Polynomial C = A+B:')
    #
    #  Terminate.
    #
    print ''
    print 'R8POLY_ADD_TEST:'
    print '  Normal end of execution.'

    return
예제 #16
0
def r8poly_add_test():

    # *****************************************************************************80
    #
    ## R8POLY_ADD_TEST tests R8POLY_ADD.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    28 May 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    import numpy as np
    from r8poly_degree import r8poly_degree
    from r8poly_print import r8poly_print

    print ""
    print "R8POLY_ADD_TEST"
    print "  R8POLY_ADD adds two R8POLY's."

    na = 5
    a = np.array([0.0, 1.1, 2.2, 3.3, 4.4, 5.5])
    nb = 5
    b = np.array([1.0, -2.1, 7.2, 8.3, 0.0, -5.5])

    c = r8poly_add(na, a, nb, b)

    r8poly_print(na, a, "  Polynomial A:")

    r8poly_print(nb, b, "  Polynomial B:")

    nc = max(na, nb)

    nc2 = r8poly_degree(nc, c)

    r8poly_print(nc2, c, "  Polynomial C = A+B:")
    #
    #  Terminate.
    #
    print ""
    print "R8POLY_ADD_TEST:"
    print "  Normal end of execution."

    return
예제 #17
0
def r8poly_div_test():

    #*****************************************************************************80
    #
    ## R8POLY_DIV_TEST tests R8POLY_DIV.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    30 May 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    import numpy as np
    from r8poly_print import r8poly_print

    print ''
    print 'R8POLY_DIV_TEST'
    print '  R8POLY_DIV computes the quotient and'
    print '  remainder for polynomial division.'
    #
    #  1: Divide X^3 + 2*X^2 - 5*X - 6  by X-2.
    #     Quotient is 3+4*X+X^2, remainder is 0.
    #
    #  2: Divide X^4 + 3*X^3 + 2*X^2 - 2  by  X^2 + X - 3.
    #     Quotient is X^2 + 2*X + 3, remainder 8*X + 7.
    #
    ntest = 2

    for test in range(0, ntest):

        if (test == 0):
            na = 3
            a = np.array([-6.0, -5.0, 2.0, 1.0])
            nb = 1
            b = np.array([-2.0, 1.0])
        elif (test == 1):
            na = 4
            a = np.array([-2.0, 5.0, 2.0, 3.0, 1.0])
            nb = 2
            b = np.array([-3.0, 1.0, 1.0])

        r8poly_print(na, a, '  The polynomial to be divided, A:')
        r8poly_print(nb, b, '  The divisor polynomial, B:')

        nq, q, nr, r = r8poly_div(na, a, nb, b)

        r8poly_print(nq, q, '  The quotient polynomial, Q:')
        r8poly_print(nr, r, '  The remainder polynomial, R:')


#
#  Terminate.
#
    print ''
    print 'R8POLY_DIV_TEST:'
    print '  Normal end of execution.'

    return
예제 #18
0
def r8poly_div_test ( ):

#*****************************************************************************80
#
## R8POLY_DIV_TEST tests R8POLY_DIV.
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license.
#
#  Modified:
#
#    30 May 2015
#
#  Author:
#
#    John Burkardt
#
  import numpy as np
  from r8poly_print import r8poly_print

  print ''
  print 'R8POLY_DIV_TEST'
  print '  R8POLY_DIV computes the quotient and'
  print '  remainder for polynomial division.'
#
#  1: Divide X^3 + 2*X^2 - 5*X - 6  by X-2.  
#     Quotient is 3+4*X+X^2, remainder is 0.
#
#  2: Divide X^4 + 3*X^3 + 2*X^2 - 2  by  X^2 + X - 3.
#     Quotient is X^2 + 2*X + 3, remainder 8*X + 7.
#
  ntest = 2
  
  for test in range ( 0,  ntest ):

    if ( test == 0 ):
      na = 3
      a = np.array ( [ -6.0, -5.0, 2.0, 1.0 ] )
      nb = 1
      b = np.array ( [ -2.0, 1.0 ] )
    elif ( test == 1 ):
      na = 4
      a = np.array ( [ -2.0, 5.0, 2.0, 3.0, 1.0 ] )
      nb = 2
      b = np.array ( [ -3.0, 1.0, 1.0 ] )

    r8poly_print ( na, a, '  The polynomial to be divided, A:' )
    r8poly_print ( nb, b, '  The divisor polynomial, B:' )

    nq, q, nr, r = r8poly_div ( na, a, nb, b )
 
    r8poly_print ( nq, q, '  The quotient polynomial, Q:' )
    r8poly_print ( nr, r, '  The remainder polynomial, R:' )
#
#  Terminate.
#
  print ''
  print 'R8POLY_DIV_TEST:'
  print '  Normal end of execution.'

  return