예제 #1
0
def read(fpath, navcrs, body):
    rdata = garlic(fpath)
    rdata.fn = fpath.split("/")[-1][:-4]
    rdata.dtype = "rimfax"

    print("----------------------------------------")
    print("Loading: " + rdata.fn)

    f = pd.read_csv(rdata.fpath, header=0, skiprows=range(1, 6))
    f = f.loc[f["record_type"] == 0]
    rdata.dat = np.array(f.iloc[:, 85:]).T
    rdata.set_proc(np.abs(rdata.dat))
    rdata.set_sim(np.ones(rdata.dat.shape))

    rdata.snum = np.max(f["n_samples"])  # samples per trace in rgram
    rdata.tnum = len(f)  # number of traces in rgram
    rdata.dt = f.loc[0, "sample_time_increment"]  # sampling interval, sec
    # rdata.prf = f["param_records"]["radar"]["prf"][0][0]                            # pulse repitition frequency
    rdata.nchan = 1

    # parse nav
    rdata.navdf = navparse.getnav_rimfax(fpath, navcrs, body)

    rdata.set_srfElev(dat=np.repeat(np.nan, rdata.tnum))

    # rdata.info["PRF [kHz]"] = rdata.prf * 1e-3

    return rdata
예제 #2
0
def read(fpath, simpath, navcrs, body):
    fn = fpath.split("/")[-1]
    root = fpath.rstrip(fn)
    print("----------------------------------------")
    print("Loading: " + fn)
    rdata = garlic(fpath)
    rdata.fn = fn.rstrip("_rgram.img")
    rdata.dtype = "sharad"
    # convert binary .img PDS RGRAM to numpy array
    # reshape array with 3600 lines
    dtype = np.dtype("float32")
    with open(fpath, "rb") as f:
        rdata.dat = np.fromfile(f, dtype)
    l = len(rdata.dat)

    rdata.snum = 3600
    rdata.tnum = int(len(rdata.dat) / rdata.snum)
    rdata.dt = .0375e-6
    rdata.prf = 700.28
    rdata.nchan = 1
    rdata.dat = rdata.dat.reshape(rdata.snum, rdata.tnum)
    rdata.set_proc(rdata.dat)

    # convert binary .img clutter sim product to numpy array
    if simpath:
        simpath = simpath + fn.replace("rgram", "geom_combined")
    else:
        simpath = root + fn.replace("rgram", "geom_combined")

    if os.path.isfile(simpath):
        with open(simpath, "rb") as f:
            sim = np.fromfile(f, dtype)
        sim = sim.reshape(rdata.snum, rdata.tnum)
    else:
        print(
            "Clutter simulation not found:\t{}\nSpecify alternate path in configuration file."
            .format(simpath))
        sim = np.ones(rdata.dat.shape)

    rdata.set_sim(sim)

    # assign signal info
    rdata.info["signal type"] = "chirp"
    rdata.info["cf [MHz]"] = 20
    rdata.info["badwidth [%]"] = 50
    rdata.info["pulse length [\u03BCs]"] = 85
    rdata.info["prf [Hz]"] = rdata.prf

    # open geom nav file for rgram
    geom_path = fpath.replace("rgram", "geom").replace("img", "tab")

    # parse nav
    rdata.navdf = navparse.getnav_sharad(geom_path, navcrs, body)

    rdata.set_srfElev(dat=np.repeat(np.nan, rdata.tnum))

    return rdata
예제 #3
0
def read_mat(fpath, navcrs, body):
    rdata = garlic(fpath)
    rdata.fn = fpath.split("/")[-1][:-4]
    rdata.dtype = "cresis_snow"
    f = h5py.File(rdata.fpath, "r")

    # assign signal info
    rdata.info["System"] = str(f["param_records"]["radar_name"][:], 'utf-16')
    if "snow" not in rdata.info["System"]:
        raise ValueError("Not snow radar data")
        return

    print("----------------------------------------")
    print("Loading: " + rdata.fn)

    rdata.dat = np.array(f["Data"][:]).T
    rdata.set_proc(np.abs(rdata.dat))
    rdata.set_sim(np.ones(rdata.dat.shape))

    rdata.snum = rdata.dat.shape[0]  # samples per trace in rgram
    rdata.tnum = rdata.dat.shape[1]  # number of traces in rgram
    rdata.dt = np.mean(np.diff(f["Time"]))  # sampling interval, sec
    rdata.prf = f["param_records"]["radar"]["prf"][0][
        0]  # pulse repitition frequency
    rdata.nchan = 1

    # parse nav
    rdata.navdf = navparse.getnav_cresis_mat(fpath, navcrs, body)

    # pull surface elevation and initilize horizon
    rdata.set_srfElev(dat=f["Surface"][:].flatten())

    rdata.pick.horizons["srf"] = utils.twtt2sample(rdata.get_srfElev(),
                                                   rdata.dt)
    # rdata.set_srfElev(rdata.navdf["elev"] - utils.twtt2depth(rdata.pick.horizons["srf"], eps_r=1))
    rdata.pick.srf = "srf"

    rdata.info["PRF [kHz]"] = rdata.prf * 1e-3

    f.close()  # close the file

    return rdata
예제 #4
0
def read_dt1(fpath, navcrs, body):
    """
    read  Sensors and Software .DT1 data files. 
    modified from gprpy/toolbox/gprIO_DT1.readdt1
    INPUT: 
    fpath           data file name including the .DT1 extension
    navcrs          nav data coordinate reference system
    body            planetary body for coordinate transformation
    OUTPUT:
    rdata           garlic class object

    Load data from a pulse_ekko file."""

    rdata = garlic(fpath)
    rdata.fn = fpath.split("/")[-1][:-4]
    rdata.dtype = "pekko"
    print("----------------------------------------")
    print("Loading: " + rdata.fn)
    infile_gps = fpath[:-4] + ".GPS"
    if not os.path.isfile(infile_gps):
        infile_gps = fpath[:-4] + ".GP2"
    infile_hd = fpath[:-4] + ".HD"
    headlen = 32
    with open(fpath,"rb") as datafile:
        datafile.seek(8,0) # 0 is beginning of file       
        snum, = struct.unpack('f',datafile.read(4))
        rdata.snum = int(snum)
        dimtrace = rdata.snum*2+128
        datafile.seek(-dimtrace,2) # 2 stands for end of file
        tnum, = struct.unpack('f',datafile.read(4))
        rdata.tnum = int(tnum)
        # Initialize matrix
        rdata.dat = np.zeros((rdata.snum,rdata.tnum))
        head = np.zeros((headlen,rdata.tnum))
        # Set the reader to the beginning of the file
        datafile.seek(0,0)
        for j in range(0,rdata.tnum):
            # Read the header info
            for k in range(0,headlen):
                info, =  struct.unpack('f',datafile.read(4))
                head[k,j] = info
            # Now the actual data
            for k in range(0,rdata.snum):
                # 2 is the size of short, 'h' is the symbol
                pnt, = struct.unpack('h',datafile.read(2))
                rdata.dat[k,j] = pnt
            datafile.seek(dimtrace*(j+1),0) 
    # known vars that are not really set
    rdata.nchan = 1
    rdata.trace_num = np.arange(rdata.tnum) + 1

    # read in header file and return info dict
    rdata.info = read_hd(infile_hd)

    # get sampling frequency
    rdata.dt = rdata.info["Total_time_window"] / rdata.snum * 1.0e-9
    rdata.info.pop("Total_time_window")

    # convert signed int amplitude to floating point for displaying
    rdata.set_proc(rdata.dat.astype(np.float))

    rdata.set_sim(np.ones(rdata.dat.shape))                # place holder for clutter data

    # create nav object to hold lon, lat, elev
    rdata.navdf = navparse.getnav_pulseekko(infile_gps, rdata.tnum, navcrs, body)

    # for ground-based GPR, elev_gnd is the same as GPS recorded elev
    rdata.set_srfElev(dat = rdata.navdf["elev"])

    return rdata
예제 #5
0
def read(fpath, navcrs, body):
    fn = fpath.split("/")[-1]
    print("----------------------------------------")
    print("Loading: " + fn)
    rdata = garlic(fpath)
    rdata.fn = fn[:-4]
    rdata.dtype = "gssi"

    # modified readgssi readdzt.dzt reader (credit, DOI: 10.5281/zenodo.3352438)
    with open(rdata.fpath, "rb") as f:

        # skip around and read necessary attributes
        f.seek(2)
        data_offset = struct.unpack(
            "<h", f.read(2))[0]  # offset to data array [bits]
        rdata.snum = struct.unpack('<h',
                                   f.read(2))[0]  # number of samples per trace
        bits = struct.unpack('<h', f.read(2))[0]  # number of bits - datatype
        f.seek(10)
        rdata.prf = struct.unpack('<f', f.read(4))[0]  # scans per second (prf)
        f.seek(26)
        range_ns = struct.unpack(
            '<f', f.read(4))[0]  # data range [ns] - record time per trace
        f.seek(52)
        rdata.nchan = struct.unpack('<h',
                                    f.read(2))[0]  # number of data channels
        rdata.dt = range_ns / rdata.snum * 1.0e-9  # sampling interval
        rdata.fs = 1 / rdata.dt  # sampling freq

        if bits == 8:
            dtype = np.uint8  # 8-bit unsigned
        elif bits == 16:
            dtype = np.uint16  # 16-bit unsigned
        elif bits == 32:
            dtype = np.int32  # 32-bit signed
        else:
            print("ingest_gssi.read error: undefined data type. #bits = " +
                  bits)
            exit(1)

        # skip ahead to data
        if data_offset < 1024:  # whether or not the header is normal or big-->determines offset to data array
            didx = 1024 * data_offset
        else:
            didx = 1024 * rdata.chan

        # skip to data index
        f.seek(didx)

        # read in data - need to transpose to get correct shape
        rdata.dat = np.fromfile(f, dtype).reshape(-1,
                                                  (rdata.snum * rdata.nchan)).T

    # ensure data file is not empty
    if not np.any(rdata.dat):
        raise ValueError("gssi_read error: file contains no radar data")

    rdata.tnum = rdata.dat.shape[1]

    # convert gssi signed int amplitude to floating point for displaying
    rdata.set_proc(rdata.dat.astype(np.float))

    rdata.set_sim(np.ones(rdata.dat.shape))  # place holder for clutter data

    # assign signal info
    rdata.info["Signal Type"] = "Impulse"
    rdata.info["Sampling Frequency [MHz]"] = rdata.fs * 1e-6
    rdata.info["PRF [kHz]"] = rdata.prf * 1e-3

    # read in gps data if exists
    infile_gps = fpath.replace(".DZT", ".DZG")

    # create nav object to hold lon, lat, hgt
    rdata.navdf = navparse.getnav_gssi(infile_gps, rdata.tnum, navcrs, body)

    # for ground-based GPR, elev_gnd is the same as GPS recorded elev
    rdata.set_srfElev(dat=rdata.navdf["elev"])

    return rdata
예제 #6
0
파일: ingest_lrs.py 프로젝트: btobers/RAGU
def read(fpath, simpath, navcrs, body):
    fn = fpath.split("/")[-1]
    root = fpath.rstrip(fn)
    print("----------------------------------------")
    print("Loading: " + fn)

    # Get # of traces
    fd = open(fpath, 'r')
    lbl = fd.read().split('\n')
    fd.close()

    rdata = garlic(fpath.replace(".lbl", ".img"))
    # get number of traces (file records in lbl file) and samples per trace
    rdata.tnum = int(lbl[19].split('=')[1])
    rdata.snum = 1000

    rdata.fn = fn.rstrip(".lbl")
    rdata.dtype = "lrs"
    # convert binary .img RGRAM to numpy array - data begins after 55 bytes of header info
    with open(rdata.fpath, "rb") as f:
        f.seek(rdata.tnum * 55)
        data = f.read(rdata.tnum * rdata.snum)
        rdata.dat = np.frombuffer(data, np.uint8)
    l = len(rdata.dat)

    rdata.dt = 305.17578125e-09
    rdata.prf = 20
    rdata.nchan = 1
    rdata.dat = rdata.dat.reshape(rdata.snum, rdata.tnum)
    rdata.set_proc(rdata.dat)

    # convert binary .img clutter sim product to numpy array
    if simpath:
        simpath = simpath + "/" + fn.replace(".lbl", "_geom_combined.img")
    else:
        simpath = root + "/" + fn.replace(".lbl", "_geom_combined.img")

    if os.path.isfile(simpath):
        with open(simpath, "rb") as f:
            sim = np.fromfile(f, np.float32)
        sim = sim.reshape(rdata.snum, rdata.tnum)
    else:
        sim = np.ones(rdata.dat.shape)

    rdata.set_sim(sim)

    # assign signal info
    rdata.info = {}
    rdata.info["Signal Type"] = "Chirp"
    rdata.info["CF [MHz]"] = 5
    rdata.info["Bandwidth [%]"] = 40
    rdata.info["Pulse Length [\u03BCs]"] = 200
    rdata.info["PRF [Hz]"] = rdata.prf

    # open geom nav file for rgram
    geom_path = fpath.replace(".lbl", "_geom.csv")

    # parse nav - use spice derived nav, not header data due to header data issues
    rdata.navdf = navparse.getnav_lrs(geom_path, navcrs, body)

    rdata.set_srfElev(dat=np.repeat(np.nan, rdata.tnum))

    return rdata
예제 #7
0
def read_h5(fpath, navcrs, body):
    rdata = garlic(fpath)
    rdata.fn = fpath.split("/")[-1][:-3]
    rdata.dtype = "oibak"

    # read in .h5 file
    print("----------------------------------------")
    print("Loading: " + rdata.fn)
    f = h5py.File(rdata.fpath, "r")

    # h5 radar data group structure
    # |-raw
    # |  |-rx0
    # |  |-tx0
    # |  |-loc0
    # |-ext
    # |  |-nav0
    # |  |-srf0
    # |-drv
    # |  |-proc0
    # |  |-clutter0
    # |  |-pick

    # pull necessary raw group data
    rdata.snum = int(
        f["raw"]["rx0"].attrs["samplesPerTrace"])  # samples per trace in rgram
    rdata.tnum = int(
        f["raw"]["rx0"].attrs["numTrace"])  # number of traces in rgram
    rdata.fs = f["raw"]["rx0"].attrs["samplingFrequency"][
        0]  # sampling frequency
    rdata.dt = 1 / rdata.fs  # sampling interval, sec
    rdata.prf = f["raw"]["tx0"].attrs["pulseRepetitionFrequency"][
        0]  # pulse repition frequency, Hz
    rdata.nchan = 1

    # pull radar proc and sim arrays
    rdata.dat = f["drv/proc0"][:]  # pulse compressed array
    rdata.set_proc(np.abs(rdata.dat))
    if "clutter0" in f["drv"].keys():
        rdata.set_sim(f["drv"]["clutter0"][:])  # simulated clutter array
    else:
        rdata.set_sim(np.ones(
            rdata.dat.shape))  # empty clutter array if no sim exists

    # assign signal info
    rdata.info["Signal Type"] = f["raw"]["tx0"].attrs["signal"].decode(
    ).capitalize()
    rdata.info["CF [MHz]"] = f["raw"]["tx0"].attrs["centerFrequency"][0] * 1e-6
    if rdata.info["Signal Type"] == "Chirp":
        rdata.info[
            "Badwidth [%]"] = f["raw"]["tx0"].attrs["bandwidth"][0] * 100
        rdata.info["Pulse Length [\u03BCs]"] = f["raw"]["tx0"].attrs["length"][
            0] * 1e6
    rdata.info["Sampling Frequency [MHz]"] = rdata.fs * 1e-6
    rdata.info["PRF [kHz]"] = rdata.prf * 1e-3

    # parse nav
    rdata.navdf = navparse.getnav_oibAK_h5(fpath, navcrs, body)
    # pull lidar surface elevation and initilize horizon
    if "srf0" in f["ext"].keys():
        rdata.set_srfElev(dat=f["ext"]["srf0"][:])
        if "twtt_surf" in f["drv"]["pick"].keys():
            twtt_srf = f["drv"]["pick"]["twtt_surf"][:]
            # replace -1 and -9 null values with np.nan
            twtt_srf[twtt_srf == -1] = np.nan
            twtt_srf[twtt_srf == -9] = np.nan
            if not np.isnan(twtt_srf).all():
                rdata.pick.horizons["srf"] = utils.twtt2sample(
                    twtt_srf, rdata.dt)
        else:
            rdata.pick.horizons["srf"] = utils.twtt2sample(
                utils.depth2twtt(rdata.navdf["elev"] - rdata.srfElev, eps_r=1),
                rdata.dt)
        rdata.pick.srf = "srf"
    else:
        rdata.set_srfElev(dat=np.repeat(np.nan, rdata.tnum))

    # read in existing bed picks
    if "twtt_bed" in f["drv"]["pick"].keys():
        twtt_bed = f["drv"]["pick"]["twtt_bed"][:]
        # replace -1 and -9 null values with np.nan
        twtt_bed[twtt_bed == -1] = np.nan
        twtt_bed[twtt_bed == -9] = np.nan
        if not np.isnan(twtt_bed).all():
            rdata.pick.horizons["bed"] = utils.twtt2sample(twtt_bed, rdata.dt)

    f.close()  # close the file

    # # temporary fix to roll array for impulse data to line up with surface - find offset by windowing around lidar surface
    # if (rdata.info["signal type"] == "impulse") and (not np.isnan(rdata.pick.existing_twttSurf).all()):
    #     lidarsrf = utils.twtt2sample(rdata.pick.existing_twttSurf, rdata.dt)
    #     pksrf = utils.pkampwind(rdata.dat, lidarsrf, 60)
    #     avoffset = np.nanmean(lidarsrf - pksrf)
    #     rdata.dat = np.roll(rdata.dat, int(round(avoffset)), axis=0)
    #     rdata.set_proc(np.abs(rdata.dat))

    return rdata