예제 #1
0
def wiggler_example():
    # current densities in A / mm^2
    j1 = 128
    j2 = 256

    # number of arc segments
    n1 = 3
    n2 = 6

    # create 5 racetrack coils above the mid-plane:
    #   lower inside, lower outside, upper inside, upper outside, and circular
    # radia.ObjRaceTrk[ctr:[x,y,z], rad:[r1,r2], lstr:[lx,ly], ht, nseg, j]
    rt1 = radia.ObjRaceTrk([0., 0., 38.], [9.5, 24.5], [120., 0.], 36, n1, j1)
    rt2 = radia.ObjRaceTrk([0., 0., 38.], [24.5, 55.5], [120., 0.], 36, n1, j2)
    rt3 = radia.ObjRaceTrk([0., 0., 76.], [10.0, 25.0], [90., 0.], 24, n1, j1)
    rt4 = radia.ObjRaceTrk([0., 0., 76.], [25.0, 55.0], [90., 0.], 24, n1, j2)
    rt5 = radia.ObjRaceTrk([0., 0., 60.], [150.0, 166.3], [0., 0.], 39, n2, -j2)

    c1 = [0.0,1.0,1.0] # blue/green
    c2 = [1.0,0.4,0.0] # orange-red
    thcn = 0.001
    radia.ObjDrwAtr(rt1, c1, thcn)
    radia.ObjDrwAtr(rt2, c2, thcn)
    radia.ObjDrwAtr(rt3, c1, thcn)
    radia.ObjDrwAtr(rt4, c2, thcn)
    radia.ObjDrwAtr(rt5, c2, thcn)

    # assemble into a group
    geom = radia.ObjCnt([rt1, rt2, rt3, rt4, rt5])

    # and reflect in the (x,y) plane [plane through (0,0,0) with normal (0,0,1)]
    radia.TrfZerPara(geom, [0, 0, 0], [0, 0, 1])

    return geom
예제 #2
0
def BuildGeometry():

    #Current Densities in A/mm^2
    j1 = 128
    j2 = 256

    #Coil Presentation Parameters
    n1 = 3
    n2 = 6
    c2 = [1, 0, 0]
    c1 = [0, 1, 1]
    thcn = 0.001

    #Create 5 Coils
    Rt1 = rad.ObjRaceTrk([0., 0., 38.], [9.5, 24.5], [120., 0.], 36, n1, j1)
    rad.ObjDrwAtr(Rt1, c1, thcn)
    Rt3 = rad.ObjRaceTrk([0., 0., 76.], [10., 25.], [90., 0.], 24, n1, j1)
    rad.ObjDrwAtr(Rt3, c1, thcn)
    Rt2 = rad.ObjRaceTrk([0., 0., 38.], [24.5, 55.5], [120., 0.], 36, n1, j2)
    rad.ObjDrwAtr(Rt2, c2, thcn)
    Rt4 = rad.ObjRaceTrk([0., 0., 76.], [25., 55.], [90., 0.], 24, n1, j2)
    rad.ObjDrwAtr(Rt4, c2, thcn)
    Rt5 = rad.ObjRaceTrk([0., 0., 60.], [150., 166.3], [0., 0.], 39, n2, -j2)
    rad.ObjDrwAtr(Rt5, c2, thcn)

    Grp = rad.ObjCnt([Rt1, Rt2, Rt3, Rt4, Rt5])

    #Define Mirror Coils
    rad.TrfZerPara(Grp, [0, 0, 0], [0, 0, 1])

    return Grp
예제 #3
0
파일: wrad_obj.py 프로젝트: eddrial/wRadia
    def wradFieldRotate(self, pivot_origin, pivot_vector, rot_magnitude):
        '''trying to write a rotation function
            # u' = quq*
            #u is point
            #q is quaternion representation of rotation angle ( sin (th/2)i, sin(th/2)j, sin (th/2)k, cos (th/2))'''
        q = R.from_quat([
            pivot_vector[0] * np.sin(rot_magnitude / 2.0),
            pivot_vector[1] * np.sin(rot_magnitude / 2.0),
            pivot_vector[2] * np.sin(rot_magnitude / 2.0),
            np.cos(rot_magnitude / 2.0)
        ])

        #rotate magnetisation vector
        self.magnetisation = q.apply(self.magnetisation)
        self.material.M = self.magnetisation.tolist()

        self.material = wrdm.wradMatLin(self.material.ksi, self.material.M)
        rd.MatApl(self.radobj, self.material.radobj)

        # rotate colour
        q = R.from_quat([
            pivot_vector[0] * np.sin(rot_magnitude / 2.0),
            pivot_vector[1] * np.sin(rot_magnitude / 2.0),
            pivot_vector[2] * np.sin(rot_magnitude / 2.0),
            np.cos(rot_magnitude / 2.0),
        ])

        tmpcol = [(4 * x - 2) for x in self.colour]

        tmpcol = q.apply(tmpcol)

        self.colour = [(2 + x) / 4.0 for x in tmpcol]
        rd.ObjDrwAtr(self.radobj, self.colour, self.linethickness)
예제 #4
0
def draw(radia_object):
    if radia_object is None:
        return False

    _rad.ObjDrwAtr(radia_object, [0, 0.5, 1], 0.001)
    _rad.ObjDrwOpenGL(radia_object)
    return True
예제 #5
0
파일: wrad_obj.py 프로젝트: eddrial/wRadia
    def wradObjDrwAtr(self, colour='default', linethickness=2):

        if colour == 'default':
            self.set_default_colour = True
            colour = [(2 + y) / 4.0 for y in self.material.M]
        else:
            self.set_default_colour = False

        self.colour = colour
        self.linethickness = linethickness

        rd.ObjDrwAtr(self.radobj, self.colour, self.linethickness)
예제 #6
0
def sp8(pos, per, gap, gapx, phase, lxc, lzc, colc, lxs, lzs, cols, airgap, br, nper):
    """
    create "Spring8" undulator
    """
    wc = [lxc, per/4 - airgap, lzc]
    px = 0
    pz = gap/2 + lzc/2
    g1 = undparts(pos + [px, -phase/2, pz], wc, wc, nper, per, br, 1)
    rad.ObjDrwAtr(g1, colc)
    g2 = undparts(pos + [px, -phase/2, -pz], wc, wc, nper, per, -br, -1)
    rad.ObjDrwAtr(g2, colc)
    wc = [lxs, per/4 - airgap, lzs]
    px = lxc/2 + gapx + lxs/2
    pz = gap/2 + lzs/2
    
    g3 = undparts(pos + [px, phase/2, pz], wc, wc, nper, per, br, 1)
    rad.ObjDrwAtr(g3, cols)
    g4 = undparts(pos + [px, phase/2, -pz], wc, wc, nper, per, br, -1)
    rad.ObjDrwAtr(g4, cols)
    g5 = undparts(pos + [-px, phase/2, pz], wc, wc, nper, per, -br, 1)
    rad.ObjDrwAtr(g5, cols)
    g6 = undparts(pos + [-px, phase/2, -pz], wc, wc, nper, per, -br, -1)
    rad.ObjDrwAtr(g6, cols)
    
    g = rad.ObjCnt([g1, g2, g3, g4, g5, g6])
    return g
예제 #7
0
def undparts(po, wv, wh, nnp, per, br, si, axe=0.):
    """
    create Pure Permanent Magnet
    """
    g = rad.ObjCnt([])
    p = po - [0, nnp*per/2, 0]
    for i in range(0,4*nnp + 1):
        if i == 0 or i == 4*nnp: s = 0.5
        else: s = 1.
        if i%2 == 0: w = wv
        else: w = wh
        t = -(i - 1)*np.pi/2*si
        m = np.array([np.sin(axe)*np.sin(t), np.cos(t), np.cos(axe)*np.sin(t)])*br*s
        ma = rad.ObjRecMag(p, w, m)
        rad.ObjAddToCnt(g, [ma])
        p = p + [0, per/4, 0]
    rad.ObjDrwAtr(g, [0, 0, 1])
    return g
예제 #8
0
def Coil(ex):
    excitation = ex
    A = 127 * 31.75
    j = excitation / A
    Pi = math.pi
    coil1 = rad.ObjRecCur([17.875, 163.5, 0], [31.75, 127, 400], [0, 0, j])
    coil2 = rad.ObjArcCur([53.75, 163.5, 200], [20, 51.75], [-Pi / 2, 0], 127,
                          5, j, 'man', 'y')
    coil3 = rad.ObjArcCur([53.75, 53.75, 235.875], [46.25, 173.25],
                          [Pi / 4, Pi / 2], 31.75, 5, -j, 'man', 'z')
    rad.TrfZerPerp(coil2, [0, 0, 0], [0, 0, 1])
    rad.TrfZerPerp(coil2, [0, 0, 0], [1, -1, 0])
    rad.TrfZerPerp(coil3, [0, 0, 0], [0, 0, 1])
    rad.TrfZerPerp(coil3, [0, 0, 0], [1, -1, 0])
    rad.TrfZerPerp(coil1, [0, 0, 0], [1, -1, 0])

    coil = rad.ObjCnt([coil1, coil2, coil3])
    rad.ObjDrwAtr(coil, [1, 0, 0], 0.001)

    return coil
예제 #9
0
파일: wrad_obj.py 프로젝트: eddrial/wRadia
    def wradFieldInvert(self):
        '''trying to write a field inversion function'''
        for i in range(len(self.magnetisation)):
            u = -self.magnetisation[i]
            self.magnetisation[i] = u
        self.material.M = self.magnetisation

        fieldinvert = rd.TrfInv(self.radobj)
        rd.TrfOrnt(self.radobj, fieldinvert)

        #invert the colour
        tmp = np.zeros(3)
        #reflect colour
        tmpcol = [(4 * x - 2) for x in self.colour]

        tmpcol[0] = -tmpcol[0]
        tmpcol[1] = -tmpcol[1]
        tmpcol[2] = -tmpcol[2]

        self.colour = [(2 + x) / 4.0 for x in tmpcol]
        rd.ObjDrwAtr(self.radobj, self.colour, self.linethickness)
예제 #10
0
파일: wrad_obj.py 프로젝트: eddrial/wRadia
    def wradRotate(self, pivot_origin, pivot_vector, rot_magnitude):
        '''trying to write a rotation function
            # u' = quq*
            #u is point
            #q is quaternion representation of rotation angle ( sin (th/2)i, sin(th/2)j, sin (th/2)k, cos (th/2))'''
        q = R.from_quat([
            pivot_vector[0] * np.sin(rot_magnitude / 2.0),
            pivot_vector[1] * np.sin(rot_magnitude / 2.0),
            pivot_vector[2] * np.sin(rot_magnitude / 2.0),
            np.cos(rot_magnitude / 2.0)
        ])
        #rotate vertices
        for i in range(len(self.vertices)):
            u = self.vertices[i] - pivot_origin

            self.vertices[i] = q.apply(u)

        #rotate magnetisation vector
        self.magnetisation = (q.apply(self.magnetisation)).tolist()
        self.material.M = self.magnetisation

        # rotate colour
        q = R.from_quat([
            pivot_vector[0] * np.sin(rot_magnitude / 2.0),
            pivot_vector[1] * np.sin(rot_magnitude / 2.0),
            pivot_vector[2] * np.sin(rot_magnitude / 2.0),
            np.cos(rot_magnitude / 2.0),
        ])

        tmpcol = [(4 * x - 2) for x in self.colour]

        tmpcol = q.apply(tmpcol)

        self.colour = [(2 + x) / 4.0 for x in tmpcol]
        rd.ObjDrwAtr(self.radobj, self.colour, self.linethickness)

        #rotate radia object
        rota = rd.TrfRot(pivot_origin, pivot_vector, rot_magnitude)
        rd.TrfOrnt(self.radobj, rota)
예제 #11
0
파일: dipole.py 프로젝트: radiasoft/rsradia
def make_dipole(pole_dimensions,
                center,
                length,
                current=-10000,
                trimesh_mode=0,
                triangle_min_size=TRIANGLE_MIN_SIZE,
                triangle_max_size=TRIANGLE_MAX_SIZE,
                longitudinal_divisions=4):
    """
    Construct a complete H-dipole made of iron.
    :param pole_dimensions: (dict) Parameters describing geometry of pole piece. See `_create_point_table`.
    :param center: (float) Center point of dipole in x (longitudinal center for beam frame).
    :param length: (float) Length of the dipole in x
    :param current: (float) Current carried by dipole coils (default: -10000)
    :param trimesh_mode: (int) If 0 (default) then the pole piece is divisioned into polygons based on point ordering
    from coordinate list. If != 0 then a Triangular mesh is automatically generated.
    :param longitudinal_divisions: (int) Number of slices to divide up the dipole into along the x-axis (default: 4)
    :return:
    """
    # coil_factor increases coil size slightly to accommodate sharp corners of pole piece
    coil_length_factor = 1.005
    coil_height_factor = 3. / 4.
    coil_or_factor = 0.85
    # Geometry for the poles
    table_quadrant_one = _create_point_table(**pole_dimensions)
    top_coodinates = _get_all_points_top(table_quadrant_one)
    bottom_coordinates = _get_all_points_bottom(top_coodinates)

    top_pole = create_pole(top_coodinates,
                           center,
                           length,
                           mode=trimesh_mode,
                           triangle_min_size=triangle_min_size,
                           triangle_max_size=triangle_max_size)
    bottom_pole = create_pole(bottom_coordinates,
                              center,
                              length,
                              mode=trimesh_mode,
                              triangle_min_size=triangle_min_size,
                              triangle_max_size=triangle_max_size)

    # Material for the poles (uses Iron)
    ironmat = rad.MatSatIsoFrm([20000, 2], [0.1, 2], [0.1, 2])
    rad.MatApl(top_pole, ironmat)
    rad.MatApl(bottom_pole, ironmat)

    # Coils
    coil_outer_radius = pole_dimensions['pole_separation'] * coil_or_factor
    top_coil = make_racetrack_coil(
        center=[
            0, 0.0,
            pole_dimensions['gap_height'] + pole_dimensions['pole_height'] / 2.
        ],
        radii=[0.1, coil_outer_radius],
        sizes=[
            length * coil_length_factor,
            pole_dimensions['pole_width'] * 2 * coil_length_factor,
            pole_dimensions['pole_height'] * coil_height_factor
        ],
        current=current)
    bottom_coil = make_racetrack_coil(center=[
        0, 0.0, -1. *
        (pole_dimensions['gap_height'] + pole_dimensions['pole_height'] / 2.)
    ],
                                      radii=[0.1, coil_outer_radius],
                                      sizes=[
                                          length * coil_length_factor,
                                          pole_dimensions['pole_width'] * 2 *
                                          coil_length_factor,
                                          pole_dimensions['pole_height'] *
                                          coil_height_factor
                                      ],
                                      current=current)

    # Visualization
    rad.ObjDrwAtr(top_pole, [0, 0.4, 0.8])
    rad.ObjDrwAtr(bottom_pole, [0, 0.4, 0.8])
    rad.ObjDrwAtr(top_coil, [0.2, 0.9, 0.6])
    rad.ObjDrwAtr(bottom_coil, [0.2, 0.9, 0.6])

    # Element Division
    rad.ObjDivMag(top_pole, [longitudinal_divisions, 1, 1])
    rad.ObjDivMag(bottom_pole, [longitudinal_divisions, 1, 1])

    return rad.ObjCnt([top_pole, bottom_pole, top_coil, bottom_coil])
예제 #12
0
def HybridUndCenPart(_gap,
                     _gap_ofst,
                     _nper,
                     _air,
                     _lp,
                     _ch_p,
                     _np,
                     _np_tip,
                     _mp,
                     _cp,
                     _lm,
                     _ch_m_xz,
                     _ch_m_yz,
                     _ch_m_yz_r,
                     _nm,
                     _mm,
                     _cm,
                     _use_ex_sym=False):
    zer = [0, 0, 0]
    grp = rad.ObjCnt([])

    y = _lp[1] / 4
    initM = [0, -1, 0]

    pole = rad.ObjFullMag([_lp[0] / 4, y, -_lp[2] / 2 - _gap / 2 - _ch_p],
                          [_lp[0] / 2, _lp[1] / 2, _lp[2]], zer,
                          [_np[0], int(_np[1] / 2 + 0.5), _np[2]], grp, _mp,
                          _cp)

    if (_ch_p > 0.):  # Pole Tip
        poleTip = rad.ObjThckPgn(
            _lp[0] / 4, _lp[0] / 2,
            [[y - _lp[1] / 4, -_gap / 2 - _ch_p], [y - _lp[1] / 4, -_gap / 2],
             [y + _lp[1] / 4 - _ch_p, -_gap / 2],
             [y + _lp[1] / 4, -_gap / 2 - _ch_p]], zer)
        rad.ObjDivMag(
            poleTip,
            [_np_tip[0], int(_np_tip[1] / 2 + 0.5), _np_tip[2]])
        rad.MatApl(poleTip, _mp)
        rad.ObjDrwAtr(poleTip, _cp)
        rad.ObjAddToCnt(grp, [poleTip])

    y += _lp[1] / 4 + _air + _lm[1] / 2

    for i in range(_nper):
        magnet = rad.ObjThckPgn(
            _lm[0] / 4, _lm[0] / 2,
            [[y + _lm[1] / 2 - _ch_m_yz_r * _ch_m_yz, -_gap / 2 - _gap_ofst],
             [y + _lm[1] / 2, -_gap / 2 - _gap_ofst - _ch_m_yz],
             [y + _lm[1] / 2, -_gap / 2 - _gap_ofst - _lm[2] + _ch_m_yz],
             [
                 y + _lm[1] / 2 - _ch_m_yz_r * _ch_m_yz,
                 -_gap / 2 - _gap_ofst - _lm[2]
             ],
             [
                 y - _lm[1] / 2 + _ch_m_yz_r * _ch_m_yz,
                 -_gap / 2 - _gap_ofst - _lm[2]
             ], [y - _lm[1] / 2, -_gap / 2 - _gap_ofst - _lm[2] + _ch_m_yz],
             [y - _lm[1] / 2, -_gap / 2 - _gap_ofst - _ch_m_yz],
             [y - _lm[1] / 2 + _ch_m_yz_r * _ch_m_yz, -_gap / 2 - _gap_ofst]],
            initM)
        # Cuting Magnet Corners
        magnet = rad.ObjCutMag(
            magnet, [_lm[0] / 2 - _ch_m_xz, 0, -_gap / 2 - _gap_ofst],
            [1, 0, 1])[0]
        magnet = rad.ObjCutMag(
            magnet, [_lm[0] / 2 - _ch_m_xz, 0, -_gap / 2 - _gap_ofst - _lm[2]],
            [1, 0, -1])[0]

        rad.ObjDivMag(magnet, _nm)
        rad.MatApl(magnet, _mm)
        rad.ObjDrwAtr(magnet, _cm)
        rad.ObjAddToCnt(grp, [magnet])

        initM[1] *= -1
        y += _lm[1] / 2 + _lp[1] / 2 + _air

        if (i < _nper - 1):
            pole = rad.ObjFullMag(
                [_lp[0] / 4, y, -_lp[2] / 2 - _gap / 2 - _ch_p],
                [_lp[0] / 2, _lp[1], _lp[2]], zer, _np, grp, _mp, _cp)

            if (_ch_p > 0.):  # Pole Tip
                poleTip = rad.ObjThckPgn(_lp[0] / 4, _lp[0] / 2,
                                         [[y - _lp[1] / 2, -_gap / 2 - _ch_p],
                                          [y - _lp[1] / 2 + _ch_p, -_gap / 2],
                                          [y + _lp[1] / 2 - _ch_p, -_gap / 2],
                                          [y + _lp[1] / 2, -_gap / 2 - _ch_p]],
                                         zer)
                rad.ObjDivMag(poleTip, _np_tip)
                rad.MatApl(poleTip, _mp)
                rad.ObjDrwAtr(poleTip, _cp)
                rad.ObjAddToCnt(grp, [poleTip])

            y += _lm[1] / 2 + _lp[1] / 2 + _air

    y -= _lp[1] / 4
    pole = rad.ObjFullMag([_lp[0] / 4, y, -_lp[2] / 2 - _gap / 2 - _ch_p],
                          [_lp[0] / 2, _lp[1] / 2, _lp[2]], zer,
                          [_np[0], int(_np[1] / 2 + 0.5), _np[2]], grp, _mp,
                          _cp)
    if (_ch_p > 0.):  # Pole Tip
        poleTip = rad.ObjThckPgn(
            _lp[0] / 4, _lp[0] / 2,
            [[y - _lp[1] / 4, -_gap / 2 - _ch_p],
             [y - _lp[1] / 4 + _ch_p, -_gap / 2], [y + _lp[1] / 4, -_gap / 2],
             [y + _lp[1] / 4, -_gap / 2 - _ch_p]], zer)
        rad.ObjDivMag(
            poleTip,
            [_np_tip[0], int(_np_tip[1] / 2 + 0.5), _np_tip[2]])
        rad.MatApl(poleTip, _mp)
        rad.ObjDrwAtr(poleTip, _cp)
        rad.ObjAddToCnt(grp, [poleTip])

    # Symmetries
    if (
            _use_ex_sym
    ):  # Some "non-physical" mirroring (applicable for calculation of central field only)
        y += _lp[1] / 4
        rad.TrfZerPerp(grp, [0, y, 0], [0, 1, 0])  # Mirror left-right
        rad.TrfZerPerp(grp, [0, 2 * y, 0], [0, 1, 0])

    #     #"Physical" symmetries (applicable also for calculation of total structure with terminations)
    #     rad.TrfZerPerp(grp, zer, [0,1,0]) #Mirror left-right
    #     #Mirror front-back
    #     rad.TrfZerPerp(grp, zer, [1,0,0])
    #     #Mirror top-bottom
    #     rad.TrfZerPara(grp, zer, [0,0,1])

    return grp
예제 #13
0
    def geom(circ):

        eps = 0
        ironcolor = [0, 0.5, 1]
        coilcolor = [1, 0, 0]
        ironmat = radia.MatSatIsoFrm([20000, 2], [0.1, 2], [0.1, 2])

        # Pole faces
        lx1 = thick / 2
        ly1 = width
        lz1 = 20
        l1 = [lx1, ly1, lz1]

        k1 = [[thick / 4. - chamfer / 2., 0, gap / 2.],
              [thick / 2. - chamfer, ly1 - 2. * chamfer]]
        k2 = [[thick / 4., 0., gap / 2. + chamfer], [thick / 2., ly1]]
        k3 = [[thick / 4., 0., gap / 2. + lz1], [thick / 2, ly1]]
        g1 = radia.ObjMltExtRtg([k1, k2, k3])
        radia.ObjDivMag(g1, n1)
        radia.ObjDrwAtr(g1, ironcolor)

        # Vertical segment on top of pole faces
        lx2 = thick / 2
        ly2 = ly1
        lz2 = 30
        l2 = [lx2, ly2, lz2]
        p2 = [thick / 4, 0, lz1 + gap / 2 + lz2 / 2 + 1 * eps]
        g2 = radia.ObjRecMag(p2, l2)
        radia.ObjDivMag(g2, n2)
        radia.ObjDrwAtr(g2, ironcolor)

        # Corner
        lx3 = thick / 2
        ly3 = ly2
        lz3 = ly2 * 1.25
        l3 = [lx3, ly3, lz3]
        p3 = [thick / 4, 0, lz1 + gap / 2 + lz2 + lz3 / 2 + 2 * eps]
        g3 = radia.ObjRecMag(p3, l3)

        typ = [
            [p3[0], p3[1] + ly3 / 2, p3[2] - lz3 / 2],
            [1, 0, 0],
            [p3[0], p3[1] - ly3 / 2, p3[2] - lz3 / 2],
            lz3 / ly3
        ]

        if circ == 1:
            radia.ObjDivMag(g3, [nbr, nbp, n3[1]], 'cyl', typ)
        else:
            radia.ObjDivMag(g3, n3)
        radia.ObjDrwAtr(g3, ironcolor)

        # Horizontal segment between the corners
        lx4 = thick / 2
        ly4 = 80
        lz4 = lz3
        l4 = [lx4, ly4, lz4]
        p4 = [thick / 4, ly3 / 2 + eps + ly4 / 2, p3[2]]
        g4 = radia.ObjRecMag(p4, l4)
        radia.ObjDivMag(g4, n4)
        radia.ObjDrwAtr(g4, ironcolor)

        # The other corner
        lx5 = thick / 2
        ly5 = lz4 * 1.25
        lz5 = lz4
        l5 = [lx5, ly5, lz5]
        p5 = [thick / 4, p4[1] + eps + (ly4 + ly5) / 2, p4[2]]
        g5 = radia.ObjRecMag(p5, l5)

        typ = [
            [p5[0], p5[1] - ly5 / 2, p5[2] - lz5 / 2],
            [1, 0, 0],
            [p5[0], p5[1] + ly5 / 2, p5[2] - lz5 / 2],
            lz5 / ly5
        ]

        if circ == 1:
            radia.ObjDivMag(g5, [nbr, nbp, n5[0]], 'cyl', typ)
        else:
            radia.ObjDivMag(g5, n5)
        radia.ObjDrwAtr(g5, ironcolor)

        # Vertical segment inside the coil
        lx6 = thick / 2
        ly6 = ly5
        lz6 = gap / 2 + lz1 + lz2
        l6 = [lx6, ly6, lz6]
        p6 = [thick / 4, p5[1], p5[2] - (lz6 + lz5) / 2 - eps]
        g6 = radia.ObjRecMag(p6, l6)
        radia.ObjDivMag(g6, n6)
        radia.ObjDrwAtr(g6, ironcolor)

        # Generation of the coil
        r_min = 5
        r_max = 40
        h = 2 * lz6 - 5

        cur_dens = current / h / (r_max - r_min)
        pc = [0, p6[1], 0]
        coil = radia.ObjRaceTrk(pc, [r_min, r_max], [thick, ly6], h, 3, cur_dens)
        radia.ObjDrwAtr(coil, coilcolor)

        # Make container and set the colors
        g = radia.ObjCnt([g1, g2, g3, g4, g5, g6])
        radia.ObjDrwAtr(g, ironcolor)
        radia.MatApl(g, ironmat)
        t = radia.ObjCnt([g, coil])

        # Define the symmetries
        radia.TrfZerPerp(g, [0, 0, 0], [1, 0, 0])
        radia.TrfZerPara(g, [0, 0, 0], [0, 0, 1])
        return t
예제 #14
0
def MagnetArray(_per, _nper, _po, _w, _si, _type, _cx, _cz, _br, _mu, _ndiv, _bs1, _s1, _bs2, _s2, _bs3, _s3, _bs2dz=0, _qp_ind_mag=None, _qp_dz=0):

    u = rad.ObjCnt([])

    Le = _bs1+_s1+_bs2+_s2+_bs3+_s3
    Lc = (_nper+0.25)*_per
    p = [_po[0],_po[1]-(Lc/2+Le),_po[2]] #po-{0,(Lc/2+Le),0}

    nMagTot = 4*_nper+7
    iMagCen = int(nMagTot/2.) #0-based index of the central magnet
    #print('iMagCen =', iMagCen) #DEBUG

    QP_IsDef = False; QP_DispIsConst = True
    nQP_Disp = 0
    if(_qp_ind_mag is not None):
        if(isinstance(_qp_ind_mag, list) or isinstance(_qp_ind_mag, array)):
            nQP_Disp = len(_qp_ind_mag)
            if(nQP_Disp > 0): QP_IsDef = True
        if(isinstance(_qp_dz, list) or isinstance(_qp_dz, array)): QP_DispIsConst = False
        elif(_qp_dz==0): QP_IsDef = False

    for i in range(nMagTot):
        wc = copy(_w)
        
        if(i==0):
            p[1] += _bs1/2
            wc[1] = _bs1
        elif(i==1):
            p[1] += _bs1/2+_s1+_bs2/2
            wc[1] = _bs2
        elif(i==2):
            p[1] += _bs2/2+_s2+_bs3/2
            wc[1] = _bs3
        elif(i==3):
            p[1] += _bs3/2+_s3+_per/8
        elif((i>3) and (i<4*_nper+4)):
            p[1] += _per/4
        elif(i==4*_nper+4):
            p[1] += _per/8+_s3+_bs3/2
            wc[1] = _bs3
        elif(i==4*_nper+5):
            p[1] += _bs3/2+_s2+_bs2/2
            wc[1] = _bs2
        elif(i==4*_nper+6):
            p[1] += _bs2/2+_s1+_bs1/2
            wc[1] = _bs1

        pc = copy(p)

        if((i==1) or (i==4*_nper+5)):
            if(_si==1): pc[2] += _bs2dz
            else: pc[2] -= _bs2dz

        if(QP_IsDef):
            for iQP in range(nQP_Disp):
                if(i == _qp_ind_mag[iQP] + iMagCen):
                    qpdz = _qp_dz
                    if(not QP_DispIsConst): qpdz = _qp_dz[iQP]
                    pc[2] += qpdz
                    #print('Abs. Ind. of Mag. to be Displaced:', i) #DEBUG
                    break

        t = -i*pi/2*_si
        mcol = [0.0,cos(t),sin(t)]
        m = [mcol[0],mcol[1]*_br,mcol[2]*_br]

        ma = MagnetBlock(pc, wc, _cx, _cz, _type, _ndiv, m)

        mcol = [0.27, 0.9*abs(mcol[1]), 0.9*abs(mcol[2])]
        rad.ObjDrwAtr(ma, mcol, 0.0001)

        rad.ObjAddToCnt(u, [ma])

    mat = rad.MatLin(_mu, abs(_br))
    rad.MatApl(u, mat)

    return u 
예제 #15
0
def Yoke():
    p0 = [58.527, 294.236]
    p1 = [0, 294.236]
    p2 = [0, 229]
    p3 = [35.75, 229]
    p4 = [35.75, 98]
    p5 = [17.5, 79.75]
    p6 = [17.5, 78.268]
    p9 = [78.268, 17.5]
    p10 = [79.75, 17.5]
    p11 = [98, 32.75]
    p12 = [229, 35.75]
    p13 = [229, 0]
    p14 = [294.236, 0]
    p15 = [294.236, 58.827]

    poly1 = [p0, p1, p2, p3, p4, p5, p6]
    poly4 = [p9, p10, p11, p12, p13, p14, p15]

    #Hyperbolic
    h = 54

    #OC: checking reduced segmentation of the pole tip
    #nStep=21
    nStep = 11

    xmin = 23.2126
    xmax = h / math.sqrt(2)
    xstep = (xmax - xmin) / (nStep - 1)
    ymin = xmin
    ymax = xmax
    ystep = xstep
    xlist = []
    ylist = []
    poly2 = []
    poly3 = []

    for i in range(nStep):
        x = xmin + i * xstep
        y = h * h / x / 2
        poly2.append([x, y])
        i += 1

    for i in range(nStep):
        y = ymax - i * ystep
        x = h * h / y / 2
        poly3.append([x, y])
        i += 1

    #OC
    del poly3[0]

    #OCTEST
    #print(poly1)
    #print(' ')
    #print(poly2)
    #print(' ')
    #print(poly3)
    #print(' ')
    #print(poly4)

    poly = poly1 + poly2 + poly3 + poly4  #2D geometry

    #Triangularization
    newlist = []
    for i in range(len(poly)):
        newlist.append([1, 1])
        i += 1

    poly3D = rad.ObjMltExtTri(100, 200, poly, newlist, 'z', [0, 0, 0],
                              'ki->Numb,TriAngMin->30,TriAreaMax->1000')

    #chamfer
    cham_y = 6.7 + h
    cham_ang = 30 / 180 * math.pi

    pch = [cham_y / math.sqrt(2), cham_y / math.sqrt(2), 200]
    vch = [-1, -1, math.sqrt(2) * math.tan(cham_ang)]

    poly3D = rad.ObjCutMag(poly3D, pch, vch, "Frame->Lab")[0]

    rad.ObjDivMag(poly3D, [[1, 1], [1, 1], [5, 0.2]], 'pln',
                  [[1, 0, 0], [0, 1, 0], [0, 0, 1]], "Frame->LabTot")

    rad.ObjDrwAtr(poly3D, [1, 1, 0], 0.001)

    return poly3D
예제 #16
0
            slicePgn.append(
                [_r * cos(phi) * cosTheta, _r * sin(phi) * cosTheta])
            phi += dPhi
        allSlicePgns.append([slicePgn, z])
        z += dz
    allSlicePgns.append([[[0., 0.]], _r])
    return rad.ObjMltExtPgn(allSlicePgns, _M)


#*********************************Entry point
if __name__ == "__main__":

    #Build the Geometry
    aSpherMag = SphericalVolume(1, 15, 15, [1, 0, 0])
    #Apply Color to it
    rad.ObjDrwAtr(aSpherMag, [0, 0.5, 0.8])

    #Display the Geometry in 3D Viewer
    rad.ObjDrwOpenGL(aSpherMag)

    #Calculate Magnetic Field
    print('Field in the Center = ', rad.Fld(aSpherMag, 'b', [0, 0, 0]))

    #Horizontal Field vs Longitudinal Position
    yMin = -0.99
    yMax = 0.99
    ny = 301
    yStep = (yMax - yMin) / (ny - 1)
    BxVsY = rad.Fld(aSpherMag, 'bx',
                    [[0, yMin + i * yStep, 0] for i in range(ny)])
예제 #17
0
    def build(self):
        """Create a quadrupole with the given geometry."""
        if self.solve_state < SolveState.SHAPES:
            self.define_shapes()

        rad.UtiDelAll()
        origin = [0, 0, 0]
        nx = [1, 0, 0]
        ny = [0, 1, 0]
        nz = [0, 0, 1]

        tip_mesh = round(self.min_mesh)
        pole_mesh = round(self.min_mesh * self.pole_mult)
        yoke_mesh = round(self.min_mesh * self.yoke_mult)

        length = self.length

        # Subdivide the pole tip cylindrically. The axis is where the edge of the tapered pole meets the Y-axis.
        points = rotate45(self.tip_points)
        x2, y2 = points[-2]  # top right of pole
        x3, y3 = points[-3]  # bottom right of pole
        m = (y2 - y3) / (x2 - x3)
        c = y2 - m * x2
        pole_tip = rad.ObjThckPgn(length / 2, length, points, "z")
        # Slice off the chamfer (note the indexing at the end here - selects the pole not the cut-off piece)
        pole_tip = rad.ObjCutMag(pole_tip, [length - self.chamfer, 0, self.r], [1, 0, -1])[0]
        n_div = max(1, round(math.sqrt((x2 - x3) ** 2 + (y2 - y3) ** 2) / pole_mesh))
        # We have to specify the q values here (second element of each sublist in the subdivision argument)
        # otherwise weird things happen
        mesh = [[n_div, 4], [tip_mesh / 3, 1], [tip_mesh, 1]]
        div_opts = 'Frame->Lab;kxkykz->Size'
        # rad.ObjDivMag(pole_tip, [[tip_mesh, 1], [tip_mesh, 1], [tip_mesh, 3]], div_opts)
        rad.ObjDivMag(pole_tip, mesh, "cyl", [[[0, c, 0], nz], nx, 1], div_opts)
        rad.TrfOrnt(pole_tip, rad.TrfRot(origin, nz, -math.pi / 4))

        pole = rad.ObjThckPgn(length / 2, length, rotate45(self.pole_points), "z")
        rad.ObjDivMag(pole, [pole_mesh, ] * 3, div_opts)
        rad.TrfOrnt(pole, rad.TrfRot(origin, nz, -math.pi / 4))

        # Need to split yoke since Radia can't build concave blocks
        points = rotate45(self.yoke_points[:2] + self.yoke_points[-2:])
        # yoke1 is the part that joins the pole to the yoke
        # Subdivide this cylindrically since the flux goes around a corner here
        # The axis is the second point (x1, y1)
        x1, y1 = points[1]
        yoke1 = rad.ObjThckPgn(length / 2, length, points, "z")
        cyl_div = [[[x1, y1, 0], nz], [self.width, self.width, 0], 1]
        # The first (kr) argument, corresponding to radial subdivision,
        # in rad.ObjDivMag cuts by number not size even though kxkykz->Size is specified.
        # So we have to fudge this. It seems to require a larger number to give the right number of subdivisions.
        n_div = max(1, round(2 * self.width / yoke_mesh))
        rad.ObjDivMag(yoke1, [n_div, yoke_mesh, yoke_mesh], "cyl", cyl_div, div_opts)
        rad.TrfOrnt(yoke1, rad.TrfRot(origin, nz, -math.pi / 4))

        # For the second part of the yoke, we use cylindrical subdivision again. But the axis is not on the corner;
        # instead we calculate the point where the two lines converge (xc, yc).
        points = self.yoke_points[1:3] + self.yoke_points[-3:-1]
        x0, y0 = points[0]
        x1, y1 = points[1]
        x2, y2 = points[2]
        x3, y3 = points[3]
        m1 = (y3 - y0) / (x3 - x0)
        m2 = (y2 - y1) / (x2 - x1)
        c1 = y0 - m1 * x0
        c2 = y1 - m2 * x1
        xc = (c2 - c1) / (m1 - m2)
        yc = m1 * xc + c1
        yoke2 = rad.ObjThckPgn(length / 2, length, points, 'z')
        cyl_div = [[[xc, yc, 0], nz], [x3 - xc, y3 - yc, 0], 1]
        n_div = max(1, round(0.7 * n_div))  # this is a bit of a fudge
        rad.ObjDivMag(yoke2, [n_div, yoke_mesh, yoke_mesh], "cyl", cyl_div, div_opts)

        yoke3 = rad.ObjThckPgn(length / 2, length, self.yoke_points[2:6], "z")
        rad.ObjDivMag(yoke3, [yoke_mesh, ] * 3, div_opts)

        steel = rad.ObjCnt([pole_tip, pole, yoke1, yoke2, yoke3])
        rad.ObjDrwAtr(steel, [0, 0, 1], 0.001)  # blue steel
        rad.TrfOrnt(steel, rad.TrfRot(origin, ny, -math.pi / 2))
        rad.ObjDrwOpenGL(steel)
        rad.TrfOrnt(steel, rad.TrfRot(origin, ny, math.pi / 2))
        # rad.TrfMlt(steel, rad.TrfPlSym([0, 0, 0], [1, -1, 0]), 2)  # reflect along X=Y line to create a quadrant
        rad.TrfZerPerp(steel, origin, [1, -1, 0])
        rad.TrfZerPerp(steel, origin, nz)
        steel_material = rad.MatSatIsoFrm([2000, 2], [0.1, 2], [0.1, 2])
        steel_material = rad.MatStd('Steel42')
        steel_material = rad.MatSatIsoFrm([959.703184, 1.41019852], [33.9916543, 0.5389669], [1.39161186, 0.64144324])
        rad.MatApl(steel, steel_material)

        coil = rad.ObjRaceTrk(origin, [5, 5 + self.coil_width],
                              [self.coil_x * 2 - self.r, length * 2], self.coil_height, 4, self.current_density)
        rad.TrfOrnt(coil, rad.TrfRot(origin, nx, -math.pi / 2))
        rad.TrfOrnt(coil, rad.TrfTrsl([0, self.r + self.taper_height + self.coil_height / 2, 0]))
        rad.TrfOrnt(coil, rad.TrfRot(origin, nz, -math.pi / 4))
        rad.ObjDrwAtr(coil, [1, 0, 0], 0.001)  # red coil
        quad = rad.ObjCnt([steel, coil])

        rad.TrfZerPara(quad, origin, nx)
        rad.TrfZerPara(quad, origin, ny)

        # rad.ObjDrwOpenGL(quad)
        self.radia_object = quad
        self.solve_state = SolveState.BUILT
예제 #18
0
파일: wrad_obj.py 프로젝트: eddrial/wRadia
    def wradReflect(self, reflection_origin, reflection_vector):
        '''trying to write a reflection function
            # u' = quq
            #u is point
            #q is quaternion representation of rotation angle ( sin (th/2)i, sin(th/2)j, sin (th/2)k, cos (th/2))'''

        r = reflection_vector / np.linalg.norm(
            reflection_vector)  #ai + bj + ck
        tmp = np.zeros(3)
        #reflect vertices
        for i in range(len(self.vertices)):
            u = self.vertices[i] - reflection_origin  # xi + yj + zk
            #i x(-a^2 + b^2 + c^2) -2aby    -2acz
            #j y(-b^2 + a^2 + c^2)     -2abx    -2bcz
            #k z(-c^2 + a^2 + b^2)    -2acx    -2bcy

            tmp[0] = u[0] * (-r[0]**2 + r[1]**2 +
                             r[2]**2) - 2 * r[0] * (r[1] * u[1] + r[2] * u[2])
            tmp[1] = u[1] * (-r[1]**2 + r[0]**2 +
                             r[2]**2) - 2 * r[1] * (r[0] * u[0] + r[2] * u[2])
            tmp[2] = u[2] * (-r[2]**2 + r[0]**2 +
                             r[1]**2) - 2 * r[2] * (r[0] * u[0] + r[1] * u[1])

            self.vertices[i] = tmp

        #reflect magnetisation vector
        u = self.magnetisation
        tmp[0] = u[0] * (-r[0]**2 + r[1]**2 +
                         r[2]**2) - 2 * r[0] * (r[1] * u[1] + r[2] * u[2])
        tmp[1] = u[1] * (-r[1]**2 + r[0]**2 +
                         r[2]**2) - 2 * r[1] * (r[0] * u[0] + r[2] * u[2])
        tmp[2] = u[2] * (-r[2]**2 + r[0]**2 +
                         r[1]**2) - 2 * r[2] * (r[0] * u[0] + r[1] * u[1])

        self.magnetisation = tmp
        self.material.M = self.magnetisation

        #is colour applied at this level?

        #reflect the colour
        r = reflection_vector / np.linalg.norm(
            reflection_vector)  #ai + bj + ck
        tmp = np.zeros(3)
        #reflect colour
        tmpcol = [(4 * x - 2) for x in self.colour]

        u = tmpcol  # xi + yj + zk
        #i x(-a^2 + b^2 + c^2) -2aby    -2acz
        #j y(-b^2 + a^2 + c^2)     -2abx    -2bcz
        #k z(-c^2 + a^2 + b^2)    -2acx    -2bcy

        tmp[0] = u[0] * (-r[0]**2 + r[1]**2 +
                         r[2]**2) - 2 * r[0] * (r[1] * u[1] + r[2] * u[2])
        tmp[1] = u[1] * (-r[1]**2 + r[0]**2 +
                         r[2]**2) - 2 * r[1] * (r[0] * u[0] + r[2] * u[2])
        tmp[2] = u[2] * (-r[2]**2 + r[0]**2 +
                         r[1]**2) - 2 * r[2] * (r[0] * u[0] + r[1] * u[1])

        tmpcol = tmp

        self.colour = [(2 + x) / 4.0 for x in tmpcol]
        rd.ObjDrwAtr(self.radobj, self.colour, self.linethickness)

        #reflect radia object
        refl = rd.TrfPlSym(reflection_origin, reflection_vector)
        rd.TrfOrnt(self.radobj, refl)
예제 #19
0
파일: radia_tk.py 프로젝트: biaobin/sirepo
def apply_color(g_id, color):
    radia.ObjDrwAtr(g_id, color)
예제 #20
0
def Geom():

    #Pole faces
    rap = 0.5
    ct = [0, 0, 0]
    z0 = gap / 2
    y0 = width / 2
    amax = hyp * asinh(y0 / z0)
    dz = z0 * (cosh(amax) - 1)
    aStep = amax / np
    na = int(amax * (1 + 2 / np) / aStep) + 1
    qq = [[(z0 * sinh(ia * aStep / hyp)), (z0 * cosh(ia * aStep))]
          for ia in range(na)]
    hh = qq[np][1] + height * rap - dz
    qq[np + 1] = [qq[np][0], hh]
    qq[np + 2] = [0, hh]
    g1 = rad.ObjThckPgn(thick / 4, thick / 2, qq)
    rad.ObjDivMag(g1, n1)

    #Vertical segment on top of pole faces
    g2 = rad.ObjRecMag(
        [thick / 4, width / 4, gap / 2 + height * (1 / 2 + rap / 2)],
        [thick / 2, width / 2, height * (1 - rap)])
    rad.ObjDivMag(g2, n2)

    #Corner
    gg = rad.ObjCnt([g1, g2])
    gp = rad.ObjCutMag(gg, [thick / 2 - chamfer - gap / 2, 0, 0],
                       [1, 0, -1])[0]
    g3 = rad.ObjRecMag([thick / 4, width / 4, gap / 2 + height + depth / 2],
                       [thick / 2, width / 2, depth])
    cy = [[[0, width / 2, gap / 2 + height], [1, 0, 0]],
          [0, 0, gap / 2 + height], 2 * depth / width]
    rad.ObjDivMag(g3, [nr3, np3, nx], 'cyl', cy)

    #Horizontal segment between the corners
    tan_n = tan(2 * pi / 2 / Nn)
    length = tan_n * (height + gap / 2) - width / 2
    g4 = rad.ObjRecMag(
        [thick / 4, width / 2 + length / 2, gap / 2 + height + depth / 2],
        [thick / 2, length, depth])
    rad.ObjDivMag(g4, n4)

    #The other corner
    posy = width / 2 + length
    posz = posy / tan_n
    g5 = rad.ObjThckPgn(thick / 4, thick / 2,
                        [[posy, posz], [posy, posz + depth],
                         [posy + depth * tan_n, posz + depth]])
    cy = [[[0, posy, posz], [1, 0, 0]], [0, posy, posz + depth], 1]
    rad.ObjDivMag(g5, [nr5, np5, nx], 'cyl', cy)

    #Generation of the coil
    Rmax = Rmin - width / 2 + gap / 2 + offset - 2
    coil1 = rad.ObjRaceTrk([0, 0, gap / 2 + height / 2 + offset / 2],
                           [Rmin, Rmax], [thick, width - 2 * Rmin],
                           height - offset, 3, CurDens)
    rad.ObjDrwAtr(coil1, coilcolor)
    hh = (height - offset) / 2
    coil2 = rad.ObjRaceTrk([0, 0, gap / 2 + height - hh / 2],
                           [Rmax, Rmax + hh * 0.8], [thick, width - 2 * Rmin],
                           hh, 3, CurDens)
    rad.ObjDrwAtr(coil2, coilcolor)

    #Make container, set the colors and define symmetries
    g = rad.ObjCnt([gp, g3, g4, g5])
    rad.ObjDrwAtr(g, ironcolor)
    gd = rad.ObjCnt([g])

    rad.TrfZerPerp(gd, ct, [1, 0, 0])
    rad.TrfZerPerp(gd, ct, [0, 1, 0])

    t = rad.ObjCnt([gd, coil1, coil2])
    rad.TrfZerPara(t, ct, [0, cos(pi / Nn), sin(pi / Nn)])

    rad.TrfMlt(t, rad.TrfRot(ct, [1, 0, 0], 4 * pi / Nn), int(round(Nn / 2)))
    rad.MatApl(g, ironmat)
    rad.TrfOrnt(t, rad.TrfRot([0, 0, 0], [1, 0, 0], pi / Nn))

    return t