예제 #1
0
def psd1d(image,dx,binsize=1.,pad=True):
    """
    NAME:
       psd1d
    PURPOSE:
       Calculate the 1D, azimuthally averaged power spectrum of an image
    INPUT:
       image - the image [NxM]
       dx- spacing in X and Y directions
       binsize= (1) radial binsize in terms of Nyquist frequency
    OUTPUT:
       the 1D power spectrum using definitions of NR 13.4 eqn. (13.4.5)
    HISTORY:
       2014-06-06 - Written - Bovy (IAS)
    """
    #First subtract DC component
    image-= numpy.mean(image[True-numpy.isnan(image)])
    #Calculate the 2D PSD
    ret2d= psd2d(image,pad=pad)
    nr, radii,ret= azimuthalAverage(ret2d,returnradii=False,binsize=binsize,
                                    dx=1./2./dx/image.shape[0],
                                    dy=1./2./dx/image.shape[1],
                                    interpnan=False,
                                    return_nr=True)
    return (radii/2.**pad/dx/(image.shape[0]/2.-0.),ret,ret/numpy.sqrt(nr))
예제 #2
0
def powerspectrum(f):

    ff = np.fft.fftshift(np.fft.fft2(f))

    ff = ff / ff.shape[0] / ff.shape[1]

    ps2 = np.abs(ff)**2

    r, ps = radialprofile.azimuthalAverage(ps2, returnradii=True)

    return np.column_stack((r, ps))
예제 #3
0
def crosspower(f1,f2):

    ff1 = np.fft.fftshift(np.fft.fft2(f1))
    ff2 = np.fft.fftshift(np.fft.fft2(f2))

    ff1 = ff1 / ff1.shape[0] / ff1.shape[1]
    ff2 = ff2 / ff2.shape[0] / ff2.shape[1]

    ps2 = np.real(ff1 * np.conjugate(ff2))

    r, ps = radialprofile.azimuthalAverage(ps2, returnradii = True)

    return np.column_stack((r, ps))    
예제 #4
0
def residual_prof(label):
    colours = ['r', 'g', 'b']
    for i, band in enumerate(bands):
        f = 'stackres_%s_%s.fits'%(label, band)
        if os.path.exists(f):
            res = pyfits.getdata(f)
            rad, prof = azimuthalAverage(res, returnradii=True, binsize=1.0)
            middle = rad < res.shape[0]/2.0
            rad, prof = [x[middle] for x in (rad, prof)]
            rad /= scales
            pyplot.plot(rad, prof, '-', color=colours[i])
            pyplot.axis('on')
        else:
            pyplot.axis('off')
예제 #5
0
    def reduce(self):
        '''convert raw image data to R(Q), also get other terms'''
        if self.image is None:      # TODO: make this conditional on need to reduce image data
            self.read_image_data()

        if abs(self.image.xsize - self.image.ysize) > PIXEL_SIZE_TOLERANCE:
            raise ValueError('X & Y pixels have different sizes, not prepared for this')

        # TODO: construct the image mask

        # radial averaging (average around the azimuth at constant radius, repeat at all radii)
        with numpy.errstate(invalid='ignore'):
            radii, rAvg = azimuthalAverage(self.image.image,
                                           center=(self.image.x0, self.image.y0),
                                           returnradii=True)

        # standard deviation results do not look right, skip that in full data reduction
        # with numpy.errstate(invalid='ignore'):
        #     with warnings.catch_warnings():
        #         # sift out this RuntimeWarning warning from numpy
        #         warnings.filterwarnings('ignore', r'Degrees of freedom <= 0 for slice')
        #         rAvgDev = azimuthalAverage(self.image.image,
        #                                        center=(self.image.x0, self.image.y0),
        #                                        stddev=True)

        radii *= self.image.xsize
        Q = (4*math.pi / self.image.wavelength) * numpy.sin(0.5*numpy.arctan2(radii, self.image.SDD))
        # scale_factor = 1 /self.image.I0_gain / self.image.I0     # TODO: verify the equation
        scale_factor = 1 / self.image.I0     # TODO: verify the equation
        rAvg = rAvg * scale_factor

        # remove NaNs and non-positives from output data
        rAvg = numpy.ma.masked_less_equal(rAvg, 0)  # mask the non-positives
        rAvg = numpy.ma.masked_invalid(rAvg)        # mask the NaNs
        Q = calc.remove_masked_data(Q, rAvg.mask)
        radii = calc.remove_masked_data(radii, rAvg.mask)
        # rAvgDev = calc.remove_masked_data(rAvgDev, rAvg.mask)
        rAvg = calc.remove_masked_data(rAvg, rAvg.mask)     # always remove the masked array last

        full = dict(Q=Q, R=rAvg, x=radii)
        self.reduced = dict(full = full)    # reset the entire dictionary with new "full" reduction
예제 #6
0
def main(imagefile = "IsoToRaster01_small.jpg"):
		
	image = cv2.imread("./data/"+imagefile)
	im_gray = cv2.imread("./data/"+imagefile, cv2.CV_LOAD_IMAGE_GRAYSCALE)
	(thresh, im_bw) = cv2.threshold(im_gray, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
	 
	# Take the fourier transform of the image.
	F1 = fftpack.fft2(im_bw)
	#F1 = cv2.dft(np.float32(im_bw),flags = cv2.DFT_COMPLEX_OUTPUT)

	# Now shift the quadrants around so that low spatial frequencies are in
	# the center of the 2D fourier transformed image.
	F2 = fftpack.fftshift( F1 )
	 
	# Calculate a 2D power spectrum
	psd2D = np.abs( F2 )**2
	 
	# Calculate the azimuthally averaged 1D power spectrum
	psd1D = radialprofile.azimuthalAverage(psd2D)
	 
	# Now plot up both
	py.figure(1)
	py.clf()
	py.imshow( np.log10( image ), cmap=py.cm.Greys)
	 
	py.figure(2)
	py.clf()
	py.imshow( np.log10( psd2D ))
	 
	py.figure(3)
	py.clf()
	py.semilogy( psd1D )
	py.xlabel('Spatial Frequency')
	py.ylabel('Power Spectrum')
	 
	py.show()
	
	return 0
예제 #7
0
Z = clip(Z,0,2)
rows,cols = Z.shape
Z[:rows-1,:cols-1]


if fa == 1:
    # First for SFR
    # Take the fourier transform of the image.
    F1 = fftpack.fft2(Z)
    # Now shift the quadrants around so that low spatial frequencies are in
    # the center of the 2D fourier transformed image.
    F2 = fftpack.fftshift(F1)
    # Calculate a 2D power spectrum
    psd2D = np.abs( F2 )**2
    # Calculate the azimuthally averaged 1D power spectrum
    psd1D = radialprofile.azimuthalAverage(psd2D)
    
    #Secondly for Dencity
    # Take the fourier transform of the image.
    F1den = fftpack.fft2(Zden)
    # Now shift the quadrants around so that low spatial frequencies are in
    # the center of the 2D fourier transformed image.
    F2den = fftpack.fftshift(F1den)
    # Calculate a 2D power spectrum
    psd2Dden = np.abs( F2den )**2
    # Calculate the azimuthally averaged 1D power spectrum
    psd1Dden = radialprofile.azimuthalAverage(psd2Dden)
    
    print 'creating cross power spectrum'    
    G1 = F2
    G2con = np.conjugate(F2den)
예제 #8
0
파일: diff.py 프로젝트: drewp/photo
def getFreqs(ar):
    freqImage = numpy.abs(numpy.fft.fft2(ar))
    freqs = azimuthalAverage(freqImage)
    return freqs
예제 #9
0
#img = np.random.randint(0, 255, (100,100))

x, y = np.mgrid[-100:100:200j, -100:100:200j]
dist = np.hypot(x, y)  # Linear distance from point 0, 0
img = np.cos(dist / 5 / np.pi)
plt.figure()
plt.imshow(img)
plt.colorbar()
plt.show()

img = convert_to_8bits(img)
plt.figure()
plt.imshow(img, cmap="hot")
plt.colorbar()
plt.show()

# center, radi = find_centroid(img)
center, radi = (100, 100), 5
rad = radial_profile(img, center)

plt.figure("Method 1")
plt.plot(rad[radi:])
#plt.show()

# Other method
az = azimuthalAverage(img)
plt.figure("Method 2")
plt.plot(az)
plt.show()
예제 #10
0
x, y = np.mgrid[-100:100:200j, -100:100:200j]
dist = np.hypot(x, y) # Linear distance from point 0, 0
img = np.cos( dist/5 / np.pi)
plt.figure()
plt.imshow(img)
plt.colorbar()
plt.show()


img = convert_to_8bits(img)
plt.figure()
plt.imshow(img,cmap="hot")
plt.colorbar()
plt.show()


# center, radi = find_centroid(img)
center, radi = (100, 100), 5
rad = radial_profile(img, center)

plt.figure("Method 1")
plt.plot(rad[radi:])
#plt.show()

# Other method
az = azimuthalAverage(img)
plt.figure("Method 2")
plt.plot(az)
plt.show()
예제 #11
0
파일: diff.py 프로젝트: drewp/photo
def getFreqs(ar):
    freqImage = numpy.abs(numpy.fft.fft2(ar))
    freqs = azimuthalAverage(freqImage)
    return freqs
예제 #12
0
                            rainfieldSmoothed * window)  # FFTW implementation
                        # Turn on the cache for optimum performance
                        pyfftw.interfaces.cache.enable()

                    # Shift frequencies
                    fprecip = np.fft.fftshift(fprecipNoShift)

                    # Compute 2D power spectrum
                    psd2d = np.abs(fprecip)**2 / (fftDomainSize *
                                                  fftDomainSize)
                    psd2dNoShift = np.abs(fprecipNoShift)**2 / (fftDomainSize *
                                                                fftDomainSize)

                    # Compute 1D radially averaged power spectrum
                    bin_size = 1
                    nr_pixels, bin_centers, psd1d = radialprofile.azimuthalAverage(
                        psd2d, binsize=bin_size, return_nr=True)
                    fieldSize = rainrate.shape
                    minFieldSize = np.min(fieldSize)

                    # Extract subset of spectrum
                    validBins = (
                        bin_centers < minFieldSize / 2
                    )  # takes the minimum dimension of the image and divide it by two
                    psd1d = psd1d[validBins]

                    # Compute frequencies
                    freq = fftpack.fftfreq(minFieldSize, d=float(resKm))
                    freqAll = np.fft.fftshift(freq)

                    # Select only positive frequencies
                    freq = freqAll[len(psd1d):]
     fprecipNoShift = np.fft.fft2(rainfieldSmoothed*window) # Numpy implementation
 if FFTmod == 'FFTW':
     fprecipNoShift = pyfftw.interfaces.numpy_fft.fft2(rainfieldSmoothed*window) # FFTW implementation
     # Turn on the cache for optimum performance
     pyfftw.interfaces.cache.enable()
 
 # Shift frequencies
 fprecip = np.fft.fftshift(fprecipNoShift)
 
 # Compute 2D power spectrum
 psd2d = np.abs(fprecip)**2/(fftDomainSize*fftDomainSize)
 psd2dNoShift = np.abs(fprecipNoShift)**2/(fftDomainSize*fftDomainSize)
 
 # Compute 1D radially averaged power spectrum
 bin_size = 1
 nr_pixels, bin_centers, psd1d = radialprofile.azimuthalAverage(psd2d, binsize=bin_size, return_nr=True)
 fieldSize = rainrate.shape
 minFieldSize = np.min(fieldSize)
 
 # Extract subset of spectrum
 validBins = (bin_centers < minFieldSize/2) # takes the minimum dimension of the image and divide it by two
 psd1d = psd1d[validBins]
 
 # Compute frequencies
 freq = fftpack.fftfreq(minFieldSize, d=float(resKm))
 freqAll = np.fft.fftshift(freq)
 
 # Select only positive frequencies
 freq = freqAll[len(psd1d):] 
 
 # Compute wavelength [km]