def __init__(self): super().__init__() # torch.cuda.set_device(1) # self.img_size = img_size self.preBlock = nn.Sequential( nn.Conv2d(2, 64, 9, stride=1, padding=4, groups=2), nn.PReLU()) # ResBlock 8 self.blocks = nn.Sequential( SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), ) self.postBlock = nn.Sequential( nn.Conv2d(64, 64, 3, stride=1, padding=1), nn.BatchNorm2d(64)) self.final = nn.Sequential( nn.Conv2d(64, 2, 9, stride=1, padding=4, groups=2), ) self.symmetry_amp = Lambda(partial(symmetry, mode="real")) self.symmetry_imag = Lambda(partial(symmetry, mode="imag"))
def __init__(self): super().__init__() self.preBlock = nn.Sequential( nn.Conv2d(2, 64, 9, stride=1, padding=4, groups=2), nn.PReLU()) # ResBlock 8 self.blocks = nn.Sequential( SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), ) self.postBlock = nn.Sequential( nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64)) self.final = nn.Sequential( nn.Conv2d(64, 2, 9, stride=1, padding=4, groups=2), ) self.symmetry_amp = Lambda(partial(symmetry, mode="real")) self.symmetry_imag = Lambda(partial(symmetry, mode="imag")) self.hardtanh = nn.Hardtanh(-pi, pi)
def __init__(self): super().__init__() n_channel = 56 self.preBlock = nn.Sequential( nn.Conv2d(1, n_channel, 9, stride=1, padding=4, groups=1), nn.PReLU()) # ResBlock 8 self.blocks = nn.Sequential( SRBlock(n_channel, n_channel), SRBlock(n_channel, n_channel), SRBlock(n_channel, n_channel), SRBlock(n_channel, n_channel), SRBlock(n_channel, n_channel), SRBlock(n_channel, n_channel), SRBlock(n_channel, n_channel), SRBlock(n_channel, n_channel), ) self.postBlock = nn.Sequential( nn.Conv2d(n_channel, n_channel, 3, stride=1, padding=1, bias=False), nn.BatchNorm2d(n_channel), ) self.final = nn.Sequential( nn.Conv2d(n_channel, 2, 9, stride=1, padding=4, groups=1), ) self.symmetry_amp = Lambda(partial(symmetry, mode="real")) self.symmetry_imag = Lambda(partial(symmetry, mode="imag")) self.elu = GeneralELU(add=+(1 + 1e-10))
def __init__(self): super().__init__() self.preBlock = nn.Sequential( nn.Conv2d(1, 64, 9, stride=1, padding=4, groups=1), nn.PReLU()) # ResBlock 16 self.blocks = nn.Sequential( SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), # SRBlock(64, 64), # SRBlock(64, 64), # SRBlock(64, 64), # SRBlock(64, 64), # SRBlock(64, 64), # SRBlock(64, 64), # SRBlock(64, 64), # SRBlock(64, 64), ) self.postBlock = nn.Sequential( nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64)) self.final = nn.Sequential( nn.Conv2d(64, 1, 9, stride=1, padding=4, groups=1), ) self.symmetry_amp = Lambda(partial(symmetry, mode="real"))
def __init__(self): super().__init__() self.preBlock = nn.Sequential( nn.Conv2d(2, 32, 9, stride=1, padding=4, groups=2), nn.PReLU()) # ResBlock 8 self.blocks = nn.Sequential( SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), ) self.postBlock = nn.Sequential( nn.Conv2d(32, 32, 3, stride=1, padding=1), nn.BatchNorm2d(32)) self.final = nn.Sequential( nn.Conv2d(32, 2, 9, stride=1, padding=4, groups=2), ) self.symmetry_amp = Lambda(partial(symmetry, mode="real")) self.symmetry_imag = Lambda(partial(symmetry, mode="imag")) self.conv1 = nn.Sequential( nn.Conv2d(2, 512, stride=1, kernel_size=3), nn.ReLU(), nn.AdaptiveAvgPool2d(1), nn.Flatten(), ) self.flatten = Lambda(flatten) self.linear1 = nn.Linear(512, 256) self.linear2 = nn.Linear(256, 2 * 3) self.shape = Lambda(shape)
def __init__(self): super().__init__() # torch.cuda.set_device(1) # self.img_size = img_size self.preBlock = nn.Sequential( nn.Conv2d(1, 32, 9, stride=1, padding=4, groups=1), nn.PReLU()) # ResBlock 12 self.blocks = nn.Sequential( SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), SRBlock(32, 32), ) self.postBlock = nn.Sequential( nn.Conv2d(32, 32, 3, stride=1, padding=1), nn.BatchNorm2d(32)) self.final = nn.Sequential( nn.Conv2d(32, 1, 9, stride=1, padding=4, groups=1), ) self.symmetry_phase = Lambda(partial(symmetry, mode="imag"))
def __init__(self, img_size): super().__init__() # torch.cuda.set_device(1) self.img_size = img_size self.preBlock_amp = nn.Sequential( nn.Conv2d(1, 64, 9, stride=1, padding=4), nn.PReLU()) self.preBlock_phase = nn.Sequential( nn.Conv2d(1, 64, 9, stride=1, padding=4), nn.PReLU()) # ResBlock 16 self.blocks_amp = nn.Sequential( SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), ) self.blocks_phase = nn.Sequential( SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), ) self.postBlock_amp = nn.Sequential( nn.Conv2d(64, 64, 3, stride=1, padding=1), nn.BatchNorm2d(64)) self.postBlock_phase = nn.Sequential( nn.Conv2d(64, 64, 3, stride=1, padding=1), nn.BatchNorm2d(64)) self.final_amp = nn.Sequential( nn.Conv2d(64, 1, 9, stride=1, padding=4), ) self.final_phase = nn.Sequential( nn.Conv2d(64, 1, 9, stride=1, padding=4), )
def __init__(self): super().__init__() self.preBlock = nn.Sequential( nn.Conv2d(2, 64, 9, stride=1, padding=4, groups=2), nn.PReLU()) # ResBlock 16 self.blocks = nn.Sequential( SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), SRBlock(64, 64), ) self.postBlock = nn.Sequential( nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64)) self.final = nn.Sequential( nn.Conv2d(64, 2, 9, stride=1, padding=4, groups=2), ) self.hardtanh = nn.Hardtanh(-pi, pi)