def in_interval(self, start=None, end=None): """ Return part of spectrogram that lies in [start, end). Parameters ---------- start : None or `~datetime.datetime` or `~sunpy.time.parse_time` compatible string or time string Start time of the part of the spectrogram that is returned. If the measurement only spans over one day, a colon separated string representing the time can be passed. end : None or `~datetime.datetime` or `~sunpy.time.parse_time` compatible string or time string See start. """ if start is not None: try: if SUNPY_LT_1: start = parse_time(start) else: start = parse_time(start).datetime except ValueError: # XXX: We could do better than that. if get_day(self.start) != get_day(self.end): raise TypeError( "Time ambiguous because data spans over more than one day" ) start = datetime.datetime( self.start.year, self.start.month, self.start.day, *list(map(int, start.split(":"))) ) start = self.time_to_x(start) if end is not None: try: if SUNPY_LT_1: end = parse_time(end) else: end = parse_time(end).datetime except ValueError: if get_day(self.start) != get_day(self.end): raise TypeError( "Time ambiguous because data spans over more than one day" ) end = datetime.datetime( self.start.year, self.start.month, self.start.day, *list(map(int, end.split(":"))) ) end = self.time_to_x(end) if start: start = int(start) if end: end = int(end) return self[:, start:end]
def __init__(self, data, time_axis, freq_axis, start, end, t_init=None, t_label="Time", f_label="Frequency", content="", instruments=None): # Because of how object creation works, there is no avoiding # unused arguments in this case. self.data = data if t_init is None: diff = start - get_day(start) t_init = diff.seconds if instruments is None: instruments = set() self.start = start self.end = end self.t_label = t_label self.f_label = f_label self.t_init = t_init self.time_axis = time_axis self.freq_axis = freq_axis self.content = content self.instruments = instruments
def read(cls, filename, **kwargs): """ Read in FITS file and return a new SWavesSpectrogram. """ fl = fits.open(filename, **kwargs) data = fl[0].data freq_axis = fl[1].data.sfreq tdata = fl[2].data mjd = tdata.mjd sec = tdata.time / 1000. start = Time(mjd[0] + sec[0] / 86400., format='mjd').datetime end = Time(mjd[-1] + sec[-1] / 86400., format='mjd').datetime time_axis = sec - sec[0] header = fl[0].header t_delt = 1.0 t_init = (start - get_day(start)).seconds content = 'EOVSA' t_label = 'Time [UT]' f_label = 'Frequency [GHz]' #reverse the frequency axis freq_axis = freq_axis[::-1] data = data[::-1, :] return cls(data, time_axis, freq_axis, start, end, t_init, t_delt, t_label, f_label, content)
def test_get_day(): end_of_day = datetime(year=2017, month=1, day=1, hour=23, minute=59, second=59, microsecond=999) begining_of_day = get_day(end_of_day) assert begining_of_day.year == 2017 assert begining_of_day.month == 1 assert begining_of_day.day == 1 assert begining_of_day.hour == 0 assert begining_of_day.minute == 0 assert begining_of_day.second == 0 assert begining_of_day.microsecond == 0
def read(cls, filename, **kwargs): """ Read in FITS file and return a new SWavesSpectrogram. """ data = np.genfromtxt(filename, skip_header=2) time_axis = data[:, 0] * 60. data = data[:, 1:].transpose() header = np.genfromtxt(filename, skip_footer=time_axis.size) freq_axis = header[0, :] bg = header[1, :] start = cls.swavesfile_to_date(filename) end = start + datetime.timedelta(seconds=time_axis[-1]) t_delt = 60. t_init = (start - get_day(start)).seconds content = '' t_label = 'Time [UT]' f_label = 'Frequency [KHz]' freq_axis = freq_axis[::-1] data = data[::-1, :] return cls(data, time_axis, freq_axis, start, end, t_init, t_delt, t_label, f_label, content, bg)
def plot(self, figure=None, overlays=[], colorbar=True, vmin=None, vmax=None, linear=True, showz=True, yres=DEFAULT_YRES, max_dist=None, **matplotlib_args): """ Plot spectrogram onto figure. Parameters ---------- figure : `~matplotlib.Figure` Figure to plot the spectrogram on. If None, new Figure is created. overlays : list List of overlays (functions that receive figure and axes and return new ones) to be applied after drawing. colorbar : bool Flag that determines whether or not to draw a colorbar. If existing figure is passed, it is attempted to overdraw old colorbar. vmin : float Clip intensities lower than vmin before drawing. vmax : float Clip intensities higher than vmax before drawing. linear : bool If set to True, "stretch" image to make frequency axis linear. showz : bool If set to True, the value of the pixel that is hovered with the mouse is shown in the bottom right corner. yres : int or None To be used in combination with linear=True. If None, sample the image with half the minimum frequency delta. Else, sample the image to be at most yres pixels in vertical dimension. Defaults to 1080 because that's a common screen size. max_dist : float or None If not None, mask elements that are further than max_dist away from actual data points (ie, frequencies that actually have data from the receiver and are not just nearest-neighbour interpolated). """ # [] as default argument is okay here because it is only read. # pylint: disable=W0102,R0914 if linear: delt = yres if delt is not None: delt = max( (self.freq_axis[0] - self.freq_axis[-1]) / (yres - 1), _min_delt(self.freq_axis) / 2. ) delt = float(delt) data = _LinearView(self.clip_values(vmin, vmax), delt) freqs = np.arange( self.freq_axis[0], self.freq_axis[-1], -data.delt ) else: data = np.array(self.clip_values(vmin, vmax)) freqs = self.freq_axis figure = plt.gcf() if figure.axes: axes = figure.axes[0] else: axes = figure.add_subplot(111) params = { 'origin': 'lower', 'aspect': 'auto', } params.update(matplotlib_args) if linear and max_dist is not None: toplot = ma.masked_array(data, mask=data.make_mask(max_dist)) else: toplot = data im = axes.imshow(toplot, **params) xa = axes.get_xaxis() ya = axes.get_yaxis() xa.set_major_formatter( FuncFormatter(self.time_formatter) ) if linear: # Start with a number that is divisible by 5. init = (self.freq_axis[0] % 5) / data.delt nticks = 15. # Calculate MHz difference between major ticks. dist = (self.freq_axis[0] - self.freq_axis[-1]) / nticks # Round to next multiple of 10, at least ten. dist = max(round(dist, -1), 10) # One pixel in image space is data.delt MHz, thus we can convert # our distance between the major ticks into image space by dividing # it by data.delt. ya.set_major_locator( IndexLocator( dist / data.delt, init ) ) ya.set_minor_locator( IndexLocator( dist / data.delt / 10, init ) ) def freq_fmt(x, pos): # This is necessary because matplotlib somehow tries to get # the mid-point of the row, which we do not need here. x = x + 0.5 return self.format_freq(self.freq_axis[0] - x * data.delt) else: freq_fmt = _list_formatter(freqs, self.format_freq) ya.set_major_locator(MaxNLocator(integer=True, steps=[1, 5, 10])) ya.set_major_formatter( FuncFormatter(freq_fmt) ) axes.set_xlabel(self.t_label) axes.set_ylabel(self.f_label) # figure.suptitle(self.content) figure.suptitle( ' '.join([ get_day(self.start).strftime("%d %b %Y"), 'Radio flux density', '(' + ', '.join(self.instruments) + ')', ]) ) for tl in xa.get_ticklabels(): tl.set_fontsize(10) tl.set_rotation(30) figure.add_axes(axes) figure.subplots_adjust(bottom=0.2) figure.subplots_adjust(left=0.2) if showz: axes.format_coord = self._mk_format_coord( data, figure.gca().format_coord) if colorbar: if len(figure.axes) > 1: Colorbar(figure.axes[1], im).set_label("Intensity") else: figure.colorbar(im).set_label("Intensity") for overlay in overlays: figure, axes = overlay(figure, axes) for ax in figure.axes: ax.autoscale() if isinstance(figure, SpectroFigure): figure._init(self, freqs) return axes
def join_many(cls, specs, mk_arr=None, nonlinear=False, maxgap=0, fill=JOIN_REPEAT): """ Produce new Spectrogram that contains spectrograms joined together in time. Parameters ---------- specs : list List of spectrograms to join together in time. nonlinear : bool If True, leave out gaps between spectrograms. Else, fill them with the value specified in fill. maxgap : float, int or None Largest gap to allow in second. If None, allow gap of arbitrary size. fill : float or int Value to fill missing values (assuming nonlinear=False) with. Can be LinearTimeSpectrogram.JOIN_REPEAT to repeat the values for the time just before the gap. mk_array: function Function that is called to create the resulting array. Can be set to LinearTimeSpectrogram.memap(filename) to create a memory mapped result array. """ # XXX: Only load header and load contents of files # on demand. mask = None if mk_arr is None: mk_arr = cls.make_array specs = sorted(specs, key=lambda x: x.start) freqs = specs[0].freq_axis if not all(np.array_equal(freqs, sp.freq_axis) for sp in specs): raise ValueError("Frequency channels do not match.") # Smallest time-delta becomes the common time-delta. min_delt = min(sp.t_delt for sp in specs) dtype_ = max(sp.dtype for sp in specs) specs = [sp.resample_time(min_delt) for sp in specs] size = sum(sp.shape[1] for sp in specs) data = specs[0] start_day = data.start xs = [] last = data for elem in specs[1:]: e_init = ( SECONDS_PER_DAY * ( get_day(elem.start) - get_day(start_day) ).days + elem.t_init ) x = int((e_init - last.t_init) / min_delt) xs.append(x) diff = last.shape[1] - x if maxgap is not None and -diff > maxgap / min_delt: raise ValueError("Too large gap.") # If we leave out undefined values, we do not want to # add values here if x > t_res. if nonlinear: size -= max(0, diff) else: size -= diff last = elem # The non existing element after the last one starts after # the last one. Needed to keep implementation below sane. xs.append(specs[-1].shape[1]) # We do that here so the user can pass a memory mapped # array if they'd like to. arr = mk_arr((data.shape[0], size), dtype_) time_axis = np.zeros((size,)) sx = 0 # Amount of pixels left out due to non-linearity. Needs to be # considered for correct time axes. sd = 0 for x, elem in zip(xs, specs): diff = x - elem.shape[1] e_time_axis = elem.time_axis elem = elem.data if x > elem.shape[1]: if nonlinear: x = elem.shape[1] else: # If we want to stay linear, fill up the missing # pixels with placeholder zeros. filler = np.zeros((data.shape[0], diff)) if fill is cls.JOIN_REPEAT: filler[:, :] = elem[:, -1, np.newaxis] else: filler[:] = fill minimum = e_time_axis[-1] e_time_axis = np.concatenate([ e_time_axis, np.linspace( minimum + min_delt, minimum + diff * min_delt, diff ) ]) elem = np.concatenate([elem, filler], 1) arr[:, sx:sx + x] = elem[:, :x] if diff > 0: if mask is None: mask = np.zeros((data.shape[0], size), dtype=np.uint8) mask[:, sx + x - diff:sx + x] = 1 time_axis[sx:sx + x] = e_time_axis[:x] + data.t_delt * (sx + sd) if nonlinear: sd += max(0, diff) sx += x params = { 'time_axis': time_axis, 'freq_axis': data.freq_axis, 'start': data.start, 'end': specs[-1].end, 't_delt': data.t_delt, 't_init': data.t_init, 't_label': data.t_label, 'f_label': data.f_label, 'content': data.content, 'instruments': _union(spec.instruments for spec in specs), } if mask is not None: arr = ma.array(arr, mask=mask) if nonlinear: del params['t_delt'] return Spectrogram(arr, **params) return common_base(specs)(arr, **params)