def calculate_polarization_vector(launch_vector, shower_axis): """ calculates the polarization vector in spherical coordinates (eR, eTheta, ePhi) """ polarization_direction = np.cross(launch_vector, np.cross(shower_axis, launch_vector)) polarization_direction /= np.linalg.norm(polarization_direction) cs = cstrans.cstrafo(*hp.cartesian_to_spherical(*launch_vector)) return cs.transform_from_ground_to_onsky(polarization_direction)
def make_sim_shower(corsika, observer=None, detector=None, station_id=None): sim_shower = NuRadioReco.framework.radio_shower.RadioShower() zenith, azimuth, magnetic_field_vector = get_angles(corsika) sim_shower.set_parameter(shp.zenith, zenith) sim_shower.set_parameter(shp.azimuth, azimuth) sim_shower.set_parameter(shp.magnetic_field_vector, magnetic_field_vector) energy = corsika['inputs'].attrs["ERANGE"][0] * units.GeV sim_shower.set_parameter(shp.energy, energy) # We can only set the shower core relative to the station if we know its position if observer is not None and detector is not None and station_id is not None: station_position = detector.get_absolute_position(station_id) position = observer.attrs['position'] cs = coordinatesystems.cstrafo(zenith, azimuth, magnetic_field_vector=magnetic_field_vector) observer_position = np.zeros(3) observer_position[0], observer_position[1], observer_position[2] = -position[1] * units.cm, position[0] * units.cm, position[2] * units.cm observer_position = cs.transform_from_magnetic_to_geographic(observer_position) core_position = (-observer_position + station_position) core_position[2] = 0 sim_shower.set_parameter(shp.core, core_position) sim_shower.set_parameter(shp.shower_maximum, corsika['CoREAS'].attrs['DepthOfShowerMaximum'] * units.g / units.cm2) sim_shower.set_parameter(shp.refractive_index_at_ground, corsika['CoREAS'].attrs["GroundLevelRefractiveIndex"]) sim_shower.set_parameter(shp.magnetic_field_rotation, corsika['CoREAS'].attrs["RotationAngleForMagfieldDeclination"] * units.degree) sim_shower.set_parameter(shp.distance_shower_maximum_geometric, corsika['CoREAS'].attrs["DistanceOfShowerMaximum"] * units.cm) sim_shower.set_parameter(shp.observation_level, corsika["inputs"].attrs["OBSLEV"] * units.cm) sim_shower.set_parameter(shp.primary_particle, corsika["inputs"].attrs["PRMPAR"]) if 'ATMOD' in corsika['inputs'].attrs.keys(): sim_shower.set_parameter(shp.atmospheric_model, corsika["inputs"].attrs["ATMOD"]) try: sim_shower.set_parameter(shp.electromagnetic_energy, corsika["highlevel"].attrs["Eem"] * units.eV) except: global warning_printed_coreas_py if(not warning_printed_coreas_py): logger.warning("No high-level quantities in HDF5 file, not setting EM energy, this warning will be only printed once") warning_printed_coreas_py = True return sim_shower
def run(self, detector, output_mode=0): """ Read in a random sample of stations from a CoREAS file. For each position the closest observer is selected and a simulated event is created for that observer. Parameters ---------- detector: Detector object Detector description of the detector that shall be simulated output_mode: integer (default 0) 0: only the event object is returned 1: the function reuturns the event object, the current inputfilename, the distance between the choosen station and the requested core position, and the area in which the core positions are randomly distributed """ while (self.__current_input_file < len(self.__input_files)): t = time.time() t_per_event = time.time() filesize = os.path.getsize( self.__input_files[self.__current_input_file]) if ( filesize < 18456 * 2 ): # based on the observation that a file with such a small filesize is corrupt self.logger.warning( "file {} seems to be corrupt, skipping to next file". format(self.__input_files[self.__current_input_file])) self.__current_input_file += 1 continue corsika = h5py.File(self.__input_files[self.__current_input_file], "r") self.logger.info( "using coreas simulation {} with E={:2g} theta = {:.0f}". format(self.__input_files[self.__current_input_file], corsika['inputs'].attrs["ERANGE"][0] * units.GeV, corsika['inputs'].attrs["THETAP"][0])) positions = [] for i, observer in enumerate( corsika['CoREAS']['observers'].values()): position = observer.attrs['position'] positions.append( np.array([-position[1], position[0], 0]) * units.cm) # self.logger.debug("({:.0f}, {:.0f})".format(positions[i][0], positions[i][1])) positions = np.array(positions) zenith, azimuth, magnetic_field_vector = coreas.get_angles(corsika) cs = cstrafo.cstrafo(zenith, azimuth, magnetic_field_vector) positions_vBvvB = cs.transform_from_magnetic_to_geographic( positions.T) positions_vBvvB = cs.transform_to_vxB_vxvxB(positions_vBvvB).T # for i, pos in enumerate(positions_vBvvB): # self.logger.debug("star shape") # self.logger.debug("({:.0f}, {:.0f}); ({:.0f}, {:.0f})".format(positions[i, 0], positions[i, 1], pos[0], pos[1])) dd = (positions_vBvvB[:, 0]**2 + positions_vBvvB[:, 1]**2)**0.5 ddmax = dd.max() self.logger.info("star shape from: {} - {}".format( -dd.max(), dd.max())) # generate core positions randomly within a rectangle cores = np.array([ self.__random_generator.uniform(self.__area[0], self.__area[1], self.__n_cores), self.__random_generator.uniform(self.__area[2], self.__area[3], self.__n_cores), np.zeros(self.__n_cores) ]).T self.__t_per_event += time.time() - t_per_event self.__t += time.time() - t station_ids = detector.get_station_ids() for iCore, core in enumerate(cores): t = time.time() evt = NuRadioReco.framework.event.Event( self.__current_input_file, iCore) # create empty event sim_shower = coreas.make_sim_shower(corsika) evt.add_sim_shower(sim_shower) rd_shower = NuRadioReco.framework.radio_shower.RadioShower( station_ids=station_ids) evt.add_shower(rd_shower) for station_id in station_ids: # convert into vxvxB frame to calculate closests simulated station to detecor station det_station_position = detector.get_absolute_position( station_id) det_station_position[2] = 0 core_rel_to_station = core - det_station_position # core_rel_to_station_vBvvB = cs.transform_from_magnetic_to_geographic(core_rel_to_station) core_rel_to_station_vBvvB = cs.transform_to_vxB_vxvxB( core_rel_to_station) dcore = (core_rel_to_station_vBvvB[0]**2 + core_rel_to_station_vBvvB[1]**2)**0.5 # print(f"{core_rel_to_station}, {core_rel_to_station_vBvvB} -> {dcore}") if (dcore > ddmax): # station is outside of the star shape pattern, create empty station station = NuRadioReco.framework.station.Station( station_id) channel_ids = detector.get_channel_ids(station_id) sim_station = coreas.make_sim_station( station_id, corsika, None, channel_ids) station.set_sim_station(sim_station) evt.set_station(station) self.logger.debug( f"station {station_id} is outside of star shape, channel_ids {channel_ids}" ) else: distances = np.linalg.norm( core_rel_to_station_vBvvB[:2] - positions_vBvvB[:, :2], axis=1) index = np.argmin(distances) distance = distances[index] key = list( corsika['CoREAS']['observers'].keys())[index] self.logger.debug( "generating core at ground ({:.0f}, {:.0f}), rel to station ({:.0f}, {:.0f}) vBvvB({:.0f}, {:.0f}), nearest simulated station is {:.0f}m away at ground ({:.0f}, {:.0f}), vBvvB({:.0f}, {:.0f})" .format(cores[iCore][0], cores[iCore][1], core_rel_to_station[0], core_rel_to_station[1], core_rel_to_station_vBvvB[0], core_rel_to_station_vBvvB[1], distance / units.m, positions[index][0], positions[index][1], positions_vBvvB[index][0], positions_vBvvB[index][1])) t_event_structure = time.time() observer = corsika['CoREAS']['observers'].get(key) station = NuRadioReco.framework.station.Station( station_id) channel_ids = detector.get_channel_ids(station_id) sim_station = coreas.make_sim_station( station_id, corsika, observer, channel_ids) station.set_sim_station(sim_station) evt.set_station(station) if (output_mode == 0): self.__t += time.time() - t yield evt elif (output_mode == 1): self.__t += time.time() - t self.__t_event_structure += time.time() - t_event_structure yield evt, self.__current_input_file else: self.logger.debug("output mode > 1 not implemented") raise NotImplementedError self.__current_input_file += 1
def get_time_trace(self, shower_energy, theta, N, dt, shower_type, n_index, R, shift_for_xmax=False, same_shower=False, iN=None, output_mode='trace', maximum_angle=20 * units.deg): """ calculates the electric-field Askaryan pulse from a charge-excess profile Parameters ---------- shower_energy: float the energy of the shower theta: float viewing angle, i.e., the angle between shower axis and launch angle of the signal (the ray path) N: int number of samples in the time domain dt: float size of one time bin in units of time profile_depth: array of floats shower depth values of the charge excess profile profile_ce: array of floats charge-excess values of the charge excess profile shower_type: string (default "HAD") type of shower, either "HAD" (hadronic), "EM" (electromagnetic) or "TAU" (tau lepton induced) n_index: float (default 1.78) index of refraction where the shower development takes place R: float (default 1km) observation distance, the signal amplitude will be scaled according to 1/R interp_factor: int (default 10) interpolation factor of charge-excess profile. Results in a more precise numerical integration which might be beneficial for small vertex distances but also slows down the calculation proportional to the interpolation factor. shift_for_xmax: bool (default True) if True the observer position is placed relative to the position of the shower maximum, if False it is placed with respect to (0,0,0) which is the start of the charge-excess profile same_shower: bool (default False) if False, for each request a new random shower realization is choosen. if True, the shower from the last request of the same shower type is used. This is needed to get the Askaryan signal for both ray tracing solutions from the same shower. iN: int or None (default None) specify shower number output_mode: string * 'trace' (default): return only the electric field trace * 'Xmax': return trace and position of xmax in units of length * 'full' return trace, depth and charge_excess profile maximum_angle: float Maximum angular difference allowed between the observer angle and the Cherenkov angle. If the difference is greater, the function returns an empty trace. Returns: array of floats array of electric-field time trace in 'on-sky' coordinate system eR, eTheta, ePhi """ if not shower_type in self._library.keys(): raise KeyError("shower type {} not present in library. Available shower types are {}".format(shower_type, *self._library.keys())) # Due to the oscillatory nature of the ARZ integral, some numerical instabilities arise # for angles near the axis and near 90 degrees. This creates some waveforms with large # spikes due to numerical errors, while the real electric field should be much smaller # than near the Cherenkov cone due to the loss of coherence. Since incoherent events # should not trigger, we return an empty trace for angular differences > 20 degrees. cherenkov_angle = np.arccos(1 / n_index) if np.abs(theta - cherenkov_angle) > maximum_angle: logger.info(f"viewing angle {theta/units.deg:.1f}deg is more than {maximum_angle/units.deg:.1f}deg away from the cherenkov cone. Returning zero trace.") self._random_numbers[shower_type] = None empty_trace = np.zeros((3, N)) return empty_trace # determine closes available energy in shower library energies = np.array([*self._library[shower_type]]) iE = np.argmin(np.abs(energies - shower_energy)) rescaling_factor = shower_energy / energies[iE] logger.info("shower energy of {:.3g}eV requested, closest available energy is {:.3g}eV. The amplitude of the charge-excess profile will be rescaled accordingly by a factor of {:.2f}".format(shower_energy / units.eV, energies[iE] / units.eV, rescaling_factor)) profiles = self._library[shower_type][energies[iE]] N_profiles = len(profiles['charge_excess']) if(iN is None): if(same_shower): if(shower_type in self._random_numbers): iN = self._random_numbers[shower_type] logger.info("using previously used shower {}/{}".format(iN, N_profiles)) else: logger.warning("no previous random number for shower type {} exists. Generating a new random number.".format(shower_type)) iN = self._random_generator.randint(N_profiles) self._random_numbers[shower_type] = iN logger.info("picking profile {}/{} randomly".format(iN, N_profiles)) else: iN = self._random_generator.randint(N_profiles) self._random_numbers[shower_type] = iN logger.info("picking profile {}/{} randomly".format(iN, N_profiles)) else: iN = int(iN) # saveguard against iN being a float logger.info("using shower {}/{} as specified by user".format(iN, N_profiles)) self._random_numbers[shower_type] = iN profile_depth = profiles['depth'] profile_ce = profiles['charge_excess'][iN] * rescaling_factor xmax = profile_depth[np.argmax(profile_ce)] vp = self.get_vector_potential_fast(shower_energy, theta, N, dt, profile_depth, profile_ce, shower_type, n_index, R, self._interp_factor, self._interp_factor2, shift_for_xmax) trace = -np.diff(vp, axis=0) / dt # trace = -np.gradient(vp, axis=0) / dt # use viewing angle relative to shower maximum for rotation into spherical coordinate system (that reduced eR component) if shift_for_xmax: thetaprime = theta else: thetaprime = theta_to_thetaprime(theta, xmax, R) cs = cstrafo.cstrafo(zenith=thetaprime, azimuth=0) trace_onsky = cs.transform_from_ground_to_onsky(trace.T) if(output_mode == 'full'): return trace_onsky, profile_depth, profile_ce elif(output_mode == 'Xmax'): xmax = profile_depth[np.argmax(profile_ce)] Lmax = xmax / rho return trace_onsky, Lmax return trace_onsky
def run(self): """ Reads in a CoREAS file and returns an event containing all simulated stations """ while (self.__current_input_file < len(self.__input_files)): t = time.time() t_per_event = time.time() filesize = os.path.getsize( self.__input_files[self.__current_input_file]) if ( filesize < 18456 * 2 ): # based on the observation that a file with such a small filesize is corrupt logger.warning( "file {} seems to be corrupt, skipping to next file". format(self.__input_files[self.__current_input_file])) self.__current_input_file += 1 continue logger.info('Reading %s ...' % self.__input_files[self.__current_input_file]) corsika = h5py.File(self.__input_files[self.__current_input_file], "r") logger.info( "using coreas simulation {} with E={:2g} theta = {:.0f}". format(self.__input_files[self.__current_input_file], corsika['inputs'].attrs["ERANGE"][0] * units.GeV, corsika['inputs'].attrs["THETAP"][0])) f_coreas = corsika["CoREAS"] if self.__ascending_run_and_event_number: evt = NuRadioReco.framework.event.Event( self.__ascending_run_and_event_number, self.__ascending_run_and_event_number) self.__ascending_run_and_event_number += 1 else: evt = NuRadioReco.framework.event.Event( corsika['inputs'].attrs['RUNNR'], corsika['inputs'].attrs['EVTNR']) evt.__event_time = f_coreas.attrs["GPSSecs"] # create sim shower, no core is set since no external detector description is given sim_shower = coreas.make_sim_shower(corsika) sim_shower.set_parameter( shp.core, np.array([ 0, 0, f_coreas.attrs["CoreCoordinateVertical"] / 100 ])) # set core evt.add_sim_shower(sim_shower) # initialize coordinate transformation cs = coordinatesystems.cstrafo( sim_shower.get_parameter(shp.zenith), sim_shower.get_parameter(shp.azimuth), magnetic_field_vector=sim_shower.get_parameter( shp.magnetic_field_vector)) # add simulated pulses as sim station for idx, (name, observer) in enumerate(f_coreas['observers'].items()): station_id = antenna_id( name, idx) # returns proper station id if possible station = NuRadioReco.framework.station.Station(station_id) if self.__det is None: sim_station = coreas.make_sim_station( station_id, corsika, observer, channel_ids=[0, 1, 2]) else: sim_station = coreas.make_sim_station( station_id, corsika, observer, channel_ids=self.__det.get_channel_ids( self.__det.get_default_station_id())) station.set_sim_station(sim_station) evt.set_station(station) if self.__det is not None: position = observer.attrs['position'] antenna_position = np.zeros(3) antenna_position[0], antenna_position[1], antenna_position[ 2] = -position[1] * units.cm, position[ 0] * units.cm, position[2] * units.cm antenna_position = cs.transform_from_magnetic_to_geographic( antenna_position) if not self.__det.has_station(station_id): self.__det.add_generic_station({ 'station_id': station_id, 'pos_easting': antenna_position[0], 'pos_northing': antenna_position[1], 'pos_altitude': antenna_position[2] }) else: self.__det.add_station_properties_for_event( { 'pos_easting': antenna_position[0], 'pos_northing': antenna_position[1], 'pos_altitude': antenna_position[2] }, station_id, evt.get_run_number(), evt.get_id()) self.__t_per_event += time.time() - t_per_event self.__t += time.time() - t self.__current_input_file += 1 if self.__det is None: yield evt else: self.__det.set_event(evt.get_run_number(), evt.get_id()) yield evt, self.__det
def make_sim_station(station_id, corsika, observer, channel_ids, weight=None): """ creates an NuRadioReco sim station from the observer object of the coreas hdf5 file Parameters ---------- station_id : station id the id of the station to create corsika : hdf5 file object the open hdf5 file object of the corsika hdf5 file observer : hdf5 observer object channel_ids : weight : weight of individual station weight corresponds to area covered by station Returns ------- sim_station: sim station ARIANNA simulated station object """ # loop over all coreas stations, rotate to ARIANNA CS and save to simulation branch zenith, azimuth, magnetic_field_vector = get_angles(corsika) if(observer is None): data = np.zeros((512, 4)) data[:, 0] = np.arange(0, 512) * units.ns / units.second else: data = np.copy(observer) data[:, 1], data[:, 2] = -observer[:, 2], observer[:, 1] # convert to SI units data[:, 0] *= units.second data[:, 1] *= conversion_fieldstrength_cgs_to_SI data[:, 2] *= conversion_fieldstrength_cgs_to_SI data[:, 3] *= conversion_fieldstrength_cgs_to_SI cs = coordinatesystems.cstrafo(zenith, azimuth, magnetic_field_vector=magnetic_field_vector) efield = cs.transform_from_magnetic_to_geographic(data[:, 1:].T) efield = cs.transform_from_ground_to_onsky(efield) # prepend trace with zeros to not have the pulse directly at the start n_samples_prepend = efield.shape[1] efield2 = np.zeros((3, n_samples_prepend + efield.shape[1])) efield2[0] = np.append(np.zeros(n_samples_prepend), efield[0]) efield2[1] = np.append(np.zeros(n_samples_prepend), efield[1]) efield2[2] = np.append(np.zeros(n_samples_prepend), efield[2]) sampling_rate = 1. / (corsika['CoREAS'].attrs['TimeResolution'] * units.second) sim_station = NuRadioReco.framework.sim_station.SimStation(station_id) electric_field = NuRadioReco.framework.electric_field.ElectricField(channel_ids) electric_field.set_trace(efield2, sampling_rate) electric_field.set_parameter(efp.ray_path_type, 'direct') electric_field.set_parameter(efp.zenith, zenith) electric_field.set_parameter(efp.azimuth, azimuth) sim_station.add_electric_field(electric_field) sim_station.set_parameter(stnp.azimuth, azimuth) sim_station.set_parameter(stnp.zenith, zenith) energy = corsika['inputs'].attrs["ERANGE"][0] * units.GeV sim_station.set_parameter(stnp.cr_energy, energy) sim_station.set_magnetic_field_vector(magnetic_field_vector) sim_station.set_parameter(stnp.cr_xmax, corsika['CoREAS'].attrs['DepthOfShowerMaximum']) try: sim_station.set_parameter(stnp.cr_energy_em, corsika["highlevel"].attrs["Eem"]) except: global warning_printed_coreas_py if(not warning_printed_coreas_py): logger.warning("No high-level quantities in HDF5 file, not setting EM energy, this warning will be only printed once") warning_printed_coreas_py = True sim_station.set_is_cosmic_ray() sim_station.set_simulation_weight(weight) return sim_station
def run(self, detector, output_mode=0): """ Read in a random sample of stations from a CoREAS file. A number of random positions is selected within a certain radius. For each position the closest observer is selected and a simulated event is created for that observer. Parameters ---------- detector: Detector object Detector description of the detector that shall be simulated output_mode: integer (default 0) 0: only the event object is returned 1: the function reuturns the event object, the current inputfilename, the distance between the choosen station and the requested core position, and the area in which the core positions are randomly distributed """ while (self.__current_input_file < len(self.__input_files)): t = time.time() t_per_event = time.time() filesize = os.path.getsize(self.__input_files[self.__current_input_file]) if(filesize < 18456 * 2): # based on the observation that a file with such a small filesize is corrupt self.logger.warning("file {} seems to be corrupt, skipping to next file".format(self.__input_files[self.__current_input_file])) self.__current_input_file += 1 continue corsika = h5py.File(self.__input_files[self.__current_input_file], "r") self.logger.info( "using coreas simulation {} with E={:2g} theta = {:.0f}".format( self.__input_files[self.__current_input_file], corsika['inputs'].attrs["ERANGE"][0] * units.GeV, corsika['inputs'].attrs["THETAP"][0] ) ) positions = [] for i, observer in enumerate(corsika['CoREAS']['observers'].values()): position = observer.attrs['position'] positions.append(np.array([-position[1], position[0], 0]) * units.cm) self.logger.debug("({:.0f}, {:.0f})".format(position[0], position[1])) positions = np.array(positions) max_distance = self.__max_distace if(max_distance is None): max_distance = np.max(np.abs(positions[:, 0:2])) area = np.pi * max_distance ** 2 if(output_mode == 0): n_cores = self.__n_cores * 100 # for output mode 1 we want always n_cores in star pattern. Therefore we generate more core positions to be able to select n_cores in the star pattern afterwards elif(output_mode == 1): n_cores = self.__n_cores else: raise ValueError('output mode {} not defined.'.format(output_mode)) theta = self.__random_generator.rand(n_cores) * 2 * np.pi r = (self.__random_generator.rand(n_cores)) ** 0.5 * max_distance cores = np.array([r * np.cos(theta), r * np.sin(theta), np.zeros(n_cores)]).T zenith, azimuth, magnetic_field_vector = coreas.get_angles(corsika) cs = cstrafo.cstrafo(zenith, azimuth, magnetic_field_vector) positions_vBvvB = cs.transform_from_magnetic_to_geographic(positions.T) positions_vBvvB = cs.transform_to_vxB_vxvxB(positions_vBvvB).T dd = (positions_vBvvB[:, 0] ** 2 + positions_vBvvB[:, 1] ** 2) ** 0.5 ddmax = dd.max() self.logger.info("star shape from: {} - {}".format(-dd.max(), dd.max())) cores_vBvvB = cs.transform_from_magnetic_to_geographic(cores.T) cores_vBvvB = cs.transform_to_vxB_vxvxB(cores_vBvvB).T dcores = (cores_vBvvB[:, 0] ** 2 + cores_vBvvB[:, 1] ** 2) ** 0.5 mask_cores_in_starpattern = dcores <= ddmax if((not np.sum(mask_cores_in_starpattern)) and (output_mode == 1)): # handle special case of no core position being generated within star pattern observer = corsika['CoREAS']['observers'].values()[0] evt = NuRadioReco.framework.event.Event(corsika['inputs'].attrs['RUNNR'], corsika['inputs'].attrs['EVTNR']) # create empty event station = NuRadioReco.framework.station.Station(self.__station_id) sim_station = coreas.make_sim_station(self.__station_id, corsika, observer, detector.get_channel_ids(self.__station_id)) station.set_sim_station(sim_station) evt.set_station(station) yield evt, self.__current_input_file, None, area cores_to_iterate = cores_vBvvB[mask_cores_in_starpattern] if(output_mode == 0): # select first n_cores that are in star pattern if(np.sum(mask_cores_in_starpattern) < self.__n_cores): self.logger.warning("only {0} cores contained in star pattern, returning {0} cores instead of {1} cores that were requested".format(np.sum(mask_cores_in_starpattern), self.__n_cores)) else: cores_to_iterate = cores_vBvvB[mask_cores_in_starpattern][:self.__n_cores] self.__t_per_event += time.time() - t_per_event self.__t += time.time() - t for iCore, core in enumerate(cores_to_iterate): t = time.time() # check if out of bounds distances = np.linalg.norm(core[:2] - positions_vBvvB[:, :2], axis=1) index = np.argmin(distances) distance = distances[index] key = list(corsika['CoREAS']['observers'].keys())[index] self.logger.info( "generating core at ground ({:.0f}, {:.0f}), vBvvB({:.0f}, {:.0f}), nearest simulated station is {:.0f}m away at ground ({:.0f}, {:.0f}), vBvvB({:.0f}, {:.0f})".format( cores[iCore][0], cores[iCore][1], core[0], core[1], distance / units.m, positions[index][0], positions[index][1], positions_vBvvB[index][0], positions_vBvvB[index][1] ) ) t_event_structure = time.time() observer = corsika['CoREAS']['observers'].get(key) evt = NuRadioReco.framework.event.Event(self.__current_input_file, iCore) # create empty event station = NuRadioReco.framework.station.Station(self.__station_id) channel_ids = detector.get_channel_ids(self.__station_id) sim_station = coreas.make_sim_station(self.__station_id, corsika, observer, channel_ids) station.set_sim_station(sim_station) evt.set_station(station) sim_shower = coreas.make_sim_shower(corsika, observer, detector, self.__station_id) evt.add_sim_shower(sim_shower) rd_shower = NuRadioReco.framework.radio_shower.RadioShower(station_ids=[station.get_id()]) evt.add_shower(rd_shower) if(output_mode == 0): self.__t += time.time() - t self.__t_event_structure += time.time() - t_event_structure yield evt elif(output_mode == 1): self.__t += time.time() - t self.__t_event_structure += time.time() - t_event_structure yield evt, self.__current_input_file, distance, area else: self.logger.debug("output mode > 1 not implemented") raise NotImplementedError self.__current_input_file += 1
def run(self, evt, station, det, debug=False, debug_plotpath=None, use_channels=None, bandpass=None, use_MC_direction=False): """ run method. This function is executed for each event Parameters --------- evt station det debug: bool if True debug plotting is enables debug_plotpath: string or None if not None plots will be saved to a file rather then shown. Plots will be save into the `debug_plotpath` directory use_channels: array of ints (default: [0, 1, 2, 3]) the channel ids to use for the electric field reconstruction default: 0 - 3 bandpass: [float, float] (default: [100 * units.MHz, 500 * units.MHz]) the lower and upper frequecy for which the analytic pulse is calculated. A butterworth filter of 10th order and a rectangular filter is applied. default 100 - 500 MHz use_MC_direction: bool use simulated direction instead of reconstructed direction """ if use_channels is None: use_channels = [0, 1, 2, 3] if bandpass is None: bandpass = [100 * units.MHz, 500 * units.MHz] self.__counter += 1 station_id = station.get_id() logger.info("event {}, station {}".format(evt.get_id(), station_id)) if use_MC_direction and (station.get_sim_station() is not None): zenith = station.get_sim_station()[stnp.zenith] azimuth = station.get_sim_station()[stnp.azimuth] sim_present = True else: logger.warning("Using reconstructed angles as no simulation present") zenith = station[stnp.zenith] azimuth = station[stnp.azimuth] sim_present = False efield_antenna_factor, V, V_timedomain = get_array_of_channels(station, use_channels, det, zenith, azimuth, self.antenna_provider, time_domain=True) sampling_rate = station.get_channel(0).get_sampling_rate() n_samples_time = V_timedomain.shape[1] noise_RMS = det.get_noise_RMS(station.get_id(), 0) def obj_xcorr(params): if(len(params) == 3): slope, ratio2, phase2 = params ratio = (np.arctan(ratio2) + np.pi * 0.5) / np.pi # project -inf..inf on 0..1 elif(len(params) == 2): slope, ratio2 = params phase2 = 0 ratio = (np.arctan(ratio2) + np.pi * 0.5) / np.pi # project -inf..inf on 0..1 elif(len(params) == 1): phase2 = 0 ratio = 0 slope = params[0] phase = np.arctan(phase2) # project -inf..+inf to -0.5 pi..0.5 pi analytic_pulse_theta = pulse.get_analytic_pulse_freq(ratio, slope, phase, n_samples_time, sampling_rate, bandpass=bandpass) analytic_pulse_phi = pulse.get_analytic_pulse_freq(1 - ratio, slope, phase, n_samples_time, sampling_rate, bandpass=bandpass) chi2 = 0 n_channels = len(V_timedomain) analytic_traces = np.zeros((n_channels, n_samples_time)) positions = np.zeros(n_channels, dtype=np.int) max_xcorrs = np.zeros(n_channels) # first determine the position with the larges xcorr for iCh, trace in enumerate(V_timedomain): analytic_trace_fft = np.sum(efield_antenna_factor[iCh] * np.array([analytic_pulse_theta, analytic_pulse_phi]), axis=0) analytic_traces[iCh] = fft.freq2time(analytic_trace_fft, sampling_rate) xcorr = np.abs(hp.get_normalized_xcorr(trace, analytic_traces[iCh])) positions[iCh] = np.argmax(np.abs(xcorr)) + 1 max_xcorrs[iCh] = xcorr.max() chi2 -= xcorr.max() logger.debug("ratio = {:.2f}, slope = {:.4g}, phase = {:.0f} ({:.4f}), chi2 = {:.4g}".format(ratio, slope, phase / units.deg, phase2, chi2)) return chi2 def obj_amplitude(params, slope, phase, pos, debug_obj=0): if(len(params) == 2): ampPhi, ampTheta = params elif(len(params) == 1): ampPhi = params[0] ampTheta = 0 analytic_pulse_theta = pulse.get_analytic_pulse_freq(ampTheta, slope, phase, n_samples_time, sampling_rate, bandpass=bandpass) analytic_pulse_phi = pulse.get_analytic_pulse_freq(ampPhi, slope, phase, n_samples_time, sampling_rate, bandpass=bandpass) chi2 = 0 if(debug_obj): fig, ax = plt.subplots(4, 2, sharex=True) n_channels = len(V_timedomain) analytic_traces = np.zeros((n_channels, n_samples_time)) # first determine the position with the larges xcorr for iCh, trace in enumerate(V_timedomain): analytic_trace_fft = np.sum(efield_antenna_factor[iCh] * np.array([analytic_pulse_theta, analytic_pulse_phi]), axis=0) analytic_traces[iCh] = fft.freq2time(analytic_trace_fft, sampling_rate) argmax = np.argmax(np.abs(trace)) imin = np.int(argmax - 30 * sampling_rate) imax = np.int(argmax + 50 * sampling_rate) tmp = np.sum(np.abs(trace[imin:imax] - np.roll(analytic_traces[iCh], pos)[imin:imax]) / noise_RMS) chi2 += tmp ** 2 if(debug_obj): ax[iCh][0].plot(trace, label='measurement') ax[iCh][0].plot(np.roll(analytic_traces[iCh], pos), '--', label='fit') ax[iCh][1].plot(trace - np.roll(analytic_traces[iCh], pos), label='delta') ax[iCh][1].set_xlim(imin, imax) logger.debug("amp phi = {:.4g}, amp theta = {:.4g} , chi2 = {:.2g}".format(ampPhi, ampTheta, chi2)) if(debug_obj): fig.suptitle("amp phi = {:.4g}, amp theta = {:.4g} , chi2 = {:.2g}".format(ampPhi, ampTheta, chi2)) fig.tight_layout() plt.show() return chi2 def obj_amplitude_slope(params, phase, pos, compare='hilbert', debug_obj=0): ampPhi, ampTheta, slope = params analytic_pulse_theta = pulse.get_analytic_pulse_freq(ampTheta, slope, phase, n_samples_time, sampling_rate, bandpass=bandpass) analytic_pulse_phi = pulse.get_analytic_pulse_freq(ampPhi, slope, phase, n_samples_time, sampling_rate, bandpass=bandpass) chi2 = 0 if(debug_obj and self.i_slope_fit_iterations % 25 == 0): fig, ax = plt.subplots(4, 2, sharex=False, figsize=(20, 10)) n_channels = len(V_timedomain) analytic_traces = np.zeros((n_channels, n_samples_time)) # first determine the position with the larges xcorr channel_max = 0 for trace in V_timedomain: if np.max(np.abs(trace)) > channel_max: channel_max = np.max(np.abs(trace)) argmax = np.argmax(np.abs(trace)) imin = np.int(max(argmax - 50 * sampling_rate, 0)) imax = np.int(argmax + 50 * sampling_rate) for iCh, trace in enumerate(V_timedomain): analytic_trace_fft = np.sum(efield_antenna_factor[iCh] * np.array([analytic_pulse_theta, analytic_pulse_phi]), axis=0) analytic_traces[iCh] = fft.freq2time(analytic_trace_fft, sampling_rate) if compare == 'trace': tmp = np.sum(np.abs(trace[imin:imax] - np.roll(analytic_traces[iCh], pos)[imin:imax]) ** 2) / noise_RMS ** 2 elif compare == 'abs': tmp = np.sum(np.abs(np.abs(trace[imin:imax]) - np.abs(np.roll(analytic_traces[iCh], pos)[imin:imax])) ** 2) / noise_RMS ** 2 elif compare == 'hilbert': tmp = np.sum(np.abs(np.abs(signal.hilbert(trace[imin:imax])) - np.abs(signal.hilbert(np.roll(analytic_traces[iCh], pos)[imin:imax]))) ** 2) / noise_RMS ** 2 else: raise NameError('Unsupported value for parameter "compare": {}. Value must be "trace", "abs" or "hilbert".'.format(compare)) chi2 += tmp if(debug_obj and self.i_slope_fit_iterations % 25 == 0): ax[iCh][1].plot(np.array(trace) / units.mV, label='measurement', color='blue') ax[iCh][1].plot(np.roll(analytic_traces[iCh], pos) / units.mV, '--', label='fit', color='orange') ax[iCh][1].plot(np.abs(signal.hilbert(trace)) / units.mV, linestyle=':', color='blue') ax[iCh][1].plot(np.abs(signal.hilbert(np.roll(analytic_traces[iCh], pos))) / units.mV, ':', label='fit', color='orange') # ax[iCh][1].plot(trace - np.roll(analytic_traces[iCh], pos), label='delta') ax[iCh][0].plot(np.abs(fft.time2freq(trace, sampling_rate)) / units.mV, label='measurement') ax[iCh][0].plot(np.abs(fft.time2freq(np.roll(analytic_traces[iCh], pos), sampling_rate)) / units.mV, '--', label='fit') ax[iCh][0].set_xlim([0, 600]) ax[iCh][1].set_xlim([imin - 500, imax + 500]) ax[iCh][1].axvline(imin, linestyle='--', alpha=.8) ax[iCh][1].axvline(imax, linestyle='--', alpha=.8) logger.debug("amp phi = {:.4g}, amp theta = {:.4g}, slope = {:.4g} chi2 = {:.8g}".format(ampPhi, ampTheta, slope, chi2)) if(debug_obj and self.i_slope_fit_iterations % 25 == 0): fig.tight_layout() plt.show() self.i_slope_fit_iterations = 0 self.i_slope_fit_iterations += 1 return chi2 def obj_amplitude_second_order(params, slope, phase, pos, compare='hilbert', debug_obj=0): ampPhi, ampTheta, second_order = params analytic_pulse_theta = pulse.get_analytic_pulse_freq(ampTheta, slope, phase, n_samples_time, sampling_rate, bandpass=bandpass, quadratic_term=second_order, quadratic_term_offset=bandpass[0]) analytic_pulse_phi = pulse.get_analytic_pulse_freq(ampPhi, slope, phase, n_samples_time, sampling_rate, bandpass=bandpass, quadratic_term=second_order, quadratic_term_offset=bandpass[0]) chi2 = 0 if(debug_obj and self.i_slope_fit_iterations % 50 == 0): fig, ax = plt.subplots(5, 2, sharex=False, figsize=(20, 10)) n_channels = len(V_timedomain) analytic_traces = np.zeros((n_channels, n_samples_time)) # first determine the position with the larges xcorr channel_max = 0 for trace in V_timedomain: if np.max(np.abs(trace)) > channel_max: channel_max = np.max(np.abs(trace)) argmax = np.argmax(np.abs(trace)) imin = np.int(max(argmax - 50 * sampling_rate, 0)) imax = np.int(argmax + 50 * sampling_rate) for iCh, trace in enumerate(V_timedomain): analytic_trace_fft = np.sum(efield_antenna_factor[iCh] * np.array([analytic_pulse_theta, analytic_pulse_phi]), axis=0) analytic_traces[iCh] = fft.freq2time(analytic_trace_fft, sampling_rate) if compare == 'trace': tmp = np.sum(np.abs(trace[imin:imax] - np.roll(analytic_traces[iCh], pos)[imin:imax]) ** 2) / noise_RMS ** 2 elif compare == 'abs': tmp = np.sum(np.abs(np.abs(trace[imin:imax]) - np.abs(np.roll(analytic_traces[iCh], pos)[imin:imax])) ** 2) / noise_RMS ** 2 elif compare == 'hilbert': tmp = np.sum(np.abs(np.abs(signal.hilbert(trace[imin:imax])) - np.abs(signal.hilbert(np.roll(analytic_traces[iCh], pos)[imin:imax]))) ** 2) / noise_RMS ** 2 else: raise NameError('Unsupported value for parameter "compare": {}. Value must be "trace", "abs" or "hilbert".'.format(compare)) chi2 += tmp if(debug_obj and self.i_slope_fit_iterations % 50 == 0): ax[iCh][1].plot(np.array(trace) / units.mV, label='measurement', color='blue') ax[iCh][1].plot(np.roll(analytic_traces[iCh], pos) / units.mV, '--', label='fit', color='orange') ax[iCh][1].plot(np.abs(signal.hilbert(trace)) / units.mV, linestyle=':', color='blue') ax[iCh][1].plot(np.abs(signal.hilbert(np.roll(analytic_traces[iCh], pos))) / units.mV, ':', label='fit', color='orange') ax[iCh][0].plot(np.abs(fft.time2freq(trace, sampling_rate)) / units.mV, label='measurement') ax[iCh][0].plot(np.abs(fft.time2freq(np.roll(analytic_traces[iCh], pos), sampling_rate)) / units.mV, '--', label='fit') ax[iCh][0].set_xlim([0, 600]) ax[iCh][1].set_xlim([imin - 500, imax + 500]) ax[iCh][1].axvline(imin, linestyle='--', alpha=.8) ax[iCh][1].axvline(imax, linestyle='--', alpha=.8) if(debug_obj and self.i_slope_fit_iterations % 50 == 0): sim_channel = station.get_sim_station().get_channel(0)[0] ax[4][0].plot(sim_channel.get_frequencies() / units.MHz, np.abs(pulse.get_analytic_pulse_freq(ampTheta, slope, phase, len(sim_channel.get_times()), sim_channel.get_sampling_rate(), bandpass=bandpass, quadratic_term=second_order)), '--', color='orange') ax[4][0].plot(sim_channel.get_frequencies() / units.MHz, np.abs(station.get_sim_station().get_channel(0)[0].get_frequency_spectrum()[1]), color='blue') ax[4][1].plot(sim_channel.get_frequencies() / units.MHz, np.abs(pulse.get_analytic_pulse_freq(ampPhi, slope, phase, len(sim_channel.get_times()), sim_channel.get_sampling_rate(), bandpass=bandpass, quadratic_term=second_order)), '--', color='orange') ax[4][1].plot(sim_channel.get_frequencies() / units.MHz, np.abs(sim_channel.get_frequency_spectrum()[2]), color='blue') ax[4][0].set_xlim([20, 500]) ax[4][1].set_xlim([20, 500]) logger.debug("amp phi = {:.4g}, amp theta = {:.4g}, slope = {:.4g} chi2 = {:.8g}".format(ampPhi, ampTheta, slope, chi2)) if(debug_obj and self.i_slope_fit_iterations % 50 == 0): fig.tight_layout() plt.show() self.i_slope_fit_iterations = 0 self.i_slope_fit_iterations += 1 return chi2 method = "Nelder-Mead" options = {'maxiter': 1000, 'disp': True} res = opt.minimize(obj_xcorr, x0=[-1], method=method, options=options) logger.info("slope xcorr fit, slope = {:.3g} with fmin = {:.3f}".format(res.x[0], res.fun)) # plot objective function phase = 0 ratio = 0 slope = res.x[0] if slope > 0 or slope < -50: # sanity check slope = -1.9 analytic_pulse_theta_freq = pulse.get_analytic_pulse_freq(ratio, slope, phase, n_samples_time, sampling_rate, bandpass=bandpass) analytic_pulse_phi_freq = pulse.get_analytic_pulse_freq(1 - ratio, slope, phase, n_samples_time, sampling_rate, bandpass=bandpass) n_channels = len(V_timedomain) analytic_traces = np.zeros((n_channels, n_samples_time)) positions = np.zeros(n_channels, dtype=np.int) max_xcorrs = np.zeros(n_channels) for iCh, trace in enumerate(V_timedomain): analytic_trace_fft = np.sum(efield_antenna_factor[iCh] * np.array([analytic_pulse_theta_freq, analytic_pulse_phi_freq]), axis=0) analytic_traces[iCh] = fft.freq2time(analytic_trace_fft, sampling_rate) xcorr = np.abs(hp.get_normalized_xcorr(trace, analytic_traces[iCh])) positions[iCh] = np.argmax(np.abs(xcorr)) + 1 max_xcorrs[iCh] = xcorr.max() pos = positions[np.argmax(max_xcorrs)] for iCh, trace in enumerate(V_timedomain): analytic_traces[iCh] = np.roll(analytic_traces[iCh], pos) res_amp = opt.minimize(obj_amplitude, x0=[1.], args=(slope, phase, pos, 0), method=method, options=options) logger.info("amplitude fit, Aphi = {:.3g} with fmin = {:.5e}".format(res_amp.x[0], res_amp.fun)) res_amp = opt.minimize(obj_amplitude, x0=[res_amp.x[0], 0], args=(slope, phase, pos, 0), method=method, options=options) logger.info("amplitude fit, Aphi = {:.3g} Atheta = {:.3g} with fmin = {:.5e}".format(res_amp.x[0], res_amp.x[1], res_amp.fun)) # counts number of iterations in the slope fit. Used so we do not need to show the plots every iteration self.i_slope_fit_iterations = 0 res_amp_slope = opt.minimize(obj_amplitude_slope, x0=[res_amp.x[0], res_amp.x[1], slope], args=(phase, pos, 'hilbert', False), method=method, options=options) # calculate uncertainties def Wrapper(params): return obj_amplitude_slope(params, phase, pos, 0) try: cov = covariance(Wrapper, res_amp_slope.x, 0.5, fast=True) except: cov = np.zeros((3, 3)) logger.info("slope fit, Aphi = {:.3g}+-{:.3g} Atheta = {:.3g}+-{:.3g}, slope = {:.3g}+-{:.3g} with fmin = {:.5e}".format( res_amp_slope.x[0], cov[0, 0] ** 0.5, res_amp_slope.x[1], cov[1, 1] ** 0.5, res_amp_slope.x[2], cov[2, 2] ** 0.5, res_amp_slope.fun) ) logger.info("covariance matrix \n{}".format(cov)) if(cov[0, 0] > 0 and cov[1, 1] > 0 and cov[2, 2] > 0): logger.info("correlation matrix \n{}".format(hp.covariance_to_correlation(cov))) Aphi = res_amp_slope.x[0] Atheta = res_amp_slope.x[1] slope = res_amp_slope.x[2] Aphi_error = cov[0, 0] ** 0.5 Atheta_error = cov[1, 1] ** 0.5 # plot objective function if 0: fo, ao = plt.subplots(1, 1) ss = np.linspace(-6, -0, 100) oos = [obj_amplitude_slope([res_amp_slope.x[0], res_amp_slope.x[1], s], phase, pos) for s in ss] ao.plot(ss, oos) n = 10 x = np.linspace(res_amp_slope.x[0] * 0.6, res_amp_slope.x[0] * 1.4, n) y = np.linspace(-5, -1, n) X, Y = np.meshgrid(x, y) Z = np.zeros((n, n)) for i in range(n): for j in range(n): Z[i, j] = obj_amplitude_slope([X[i, j], X[i, j] * res_amp_slope.x[1] / res_amp_slope.x[0], Y[i, j]], phase, pos) fig, ax = plt.subplots(1, 1) ax.pcolor(X, Y, Z, cmap='viridis_r', vmin=res_amp_slope.fun, vmax=res_amp_slope.fun * 2) analytic_pulse_theta = pulse.get_analytic_pulse(Atheta, slope, phase, n_samples_time, sampling_rate, bandpass=bandpass) analytic_pulse_phi = pulse.get_analytic_pulse(Aphi, slope, phase, n_samples_time, sampling_rate, bandpass=bandpass) analytic_pulse_theta_freq = pulse.get_analytic_pulse_freq(Atheta, slope, phase, n_samples_time, sampling_rate, bandpass=bandpass) analytic_pulse_phi_freq = pulse.get_analytic_pulse_freq(Aphi, slope, phase, n_samples_time, sampling_rate, bandpass=bandpass) analytic_pulse_theta = np.roll(analytic_pulse_theta, pos) analytic_pulse_phi = np.roll(analytic_pulse_phi, pos) station_trace = np.array([np.zeros_like(analytic_pulse_theta), analytic_pulse_theta, analytic_pulse_phi]) electric_field = NuRadioReco.framework.electric_field.ElectricField(use_channels) electric_field.set_trace(station_trace, sampling_rate) energy_fluence = trace_utilities.get_electric_field_energy_fluence(electric_field.get_trace(), electric_field.get_times()) electric_field.set_parameter(efp.signal_energy_fluence, energy_fluence) electric_field.set_parameter_error(efp.signal_energy_fluence, np.array([0, Atheta_error, Aphi_error])) electric_field.set_parameter(efp.cr_spectrum_slope, slope) electric_field.set_parameter(efp.zenith, zenith) electric_field.set_parameter(efp.azimuth, azimuth) # calculate high level parameters x = np.sign(Atheta) * np.abs(Atheta) ** 0.5 y = np.sign(Aphi) * np.abs(Aphi) ** 0.5 sx = Atheta_error * 0.5 sy = Aphi_error * 0.5 pol_angle = np.arctan2(abs(y), abs(x)) pol_angle_error = 1. / (x ** 2 + y ** 2) * (y ** 2 * sx ** 2 + x ** 2 + sy ** 2) ** 0.5 # gaussian error propagation logger.info("polarization angle = {:.1f} +- {:.1f}".format(pol_angle / units.deg, pol_angle_error / units.deg)) electric_field.set_parameter(efp.polarization_angle, pol_angle) electric_field.set_parameter_error(efp.polarization_angle, pol_angle_error) # compute expeted polarization site = det.get_site(station.get_id()) exp_efield = hp.get_lorentzforce_vector(zenith, azimuth, hp.get_magnetic_field_vector(site)) cs = coordinatesystems.cstrafo(zenith, azimuth, site=site) exp_efield_onsky = cs.transform_from_ground_to_onsky(exp_efield) exp_pol_angle = np.arctan2(exp_efield_onsky[2], exp_efield_onsky[1]) logger.info("expected polarization angle = {:.1f}".format(exp_pol_angle / units.deg)) electric_field.set_parameter(efp.polarization_angle_expectation, exp_pol_angle) res_amp_second_order = opt.minimize( obj_amplitude_second_order, x0=[res_amp_slope.x[0], res_amp_slope.x[1], 0], args=(slope, phase, pos, 'hilbert', False), method=method, options=options ) second_order_correction = res_amp_second_order.x[2] electric_field.set_parameter(efp.cr_spectrum_quadratic_term, second_order_correction) # figure out the timing of the electric field voltages_from_efield = trace_utilities.get_channel_voltage_from_efield(station, electric_field, use_channels, det, zenith, azimuth, self.antenna_provider, False) correlation = np.zeros(voltages_from_efield.shape[1] + station.get_channel(use_channels[0]).get_trace().shape[0] - 1) channel_trace_start_times = [] for channel_id in use_channels: channel_trace_start_times.append(station.get_channel(channel_id).get_trace_start_time()) average_trace_start_time = np.average(channel_trace_start_times) for i_trace, v_trace in enumerate(voltages_from_efield): channel = station.get_channel(use_channels[i_trace]) time_shift = geo_utl.get_time_delay_from_direction(zenith, azimuth, det.get_relative_position(station.get_id(), use_channels[i_trace])) - (channel.get_trace_start_time() - average_trace_start_time) voltage_trace = np.roll(np.copy(v_trace), int(time_shift * electric_field.get_sampling_rate())) correlation += signal.correlate(voltage_trace, channel.get_trace()) toffset = (np.arange(0, correlation.shape[0]) - channel.get_trace().shape[0]) / electric_field.get_sampling_rate() electric_field.set_trace_start_time(-toffset[np.argmax(correlation)] + average_trace_start_time) station.add_electric_field(electric_field) if debug: analytic_traces = np.zeros((n_channels, n_samples_time)) for iCh, trace in enumerate(V_timedomain): analytic_trace_fft = np.sum(efield_antenna_factor[iCh] * np.array([analytic_pulse_theta_freq, analytic_pulse_phi_freq]), axis=0) analytic_traces[iCh] = fft.freq2time(analytic_trace_fft, electric_field.get_sampling_rate()) analytic_traces[iCh] = np.roll(analytic_traces[iCh], pos) fig, (ax2, ax2f) = plt.subplots(2, 1, figsize=(10, 8)) lw = 2 times = station.get_times() / units.ns ax2.plot(times, station.get_trace()[1] / units.mV * units.m, "-C0", label="analytic eTheta", lw=lw) ax2.plot(times, station.get_trace()[2] / units.mV * units.m, "-C1", label="analytic ePhi", lw=lw) tmax = times[np.argmax(station.get_trace()[2])] ax2.set_xlim(tmax - 40, tmax + 50) ff = station.get_frequencies() / units.MHz df = ff[1] - ff[0] ax2f.plot(ff[ff < 600], np.abs(station.get_frequency_spectrum()[1][ff < 600]) / df / units.mV * units.m, "-C0", label="analytic eTheta", lw=lw) ax2f.plot(ff[ff < 600], np.abs(station.get_frequency_spectrum()[2][ff < 600]) / df / units.mV * units.m, "-C1", label="analytic ePhi", lw=lw) if station.has_sim_station(): sim_station = station.get_sim_station() logger.debug("station start time {:.1f}ns, relativ sim station time = {:.1f}".format(station.get_trace_start_time(), sim_station.get_trace_start_time())) df = (sim_station.get_frequencies()[1] - sim_station.get_frequencies()[0]) / units.MHz c = 1. ffsim = sim_station.get_frequencies() mask = (ffsim > 100 * units.MHz) & (ffsim < 500 * units.MHz) result = poly.polyfit(ffsim[mask], np.log10(np.abs(sim_station.get_frequency_spectrum()[2][mask]) / df / units.mV * units.m), 1, full=True) logger.info("polyfit result = {:.2g} {:.2g}".format(*result[0])) ax2.plot(sim_station.get_times() / units.ns, sim_station.get_trace()[1] / units.mV * units.m * c, "--C0", label="simulation eTheta", lw=lw) ax2.plot(sim_station.get_times() / units.ns, sim_station.get_trace()[2] / units.mV * units.m * c, "--C1", label="simulation ePhi", lw=lw) ax2f.plot(sim_station.get_frequencies() / units.MHz, np.abs(sim_station.get_frequency_spectrum()[1]) / df / units.mV * units.m * c, "--C0", label="simulation eTheta", lw=lw) ax2f.plot(sim_station.get_frequencies() / units.MHz, np.abs(sim_station.get_frequency_spectrum()[2]) / df / units.mV * units.m * c, "--C1", label="simulation ePhi", lw=lw) ax2f.plot(ffsim / units.MHz, 10 ** (result[0][0] + result[0][1] * ffsim), "C3:") ax2.legend(fontsize="xx-small") ax2.set_xlabel("time [ns]") ax2.set_ylabel("electric-field [mV/m]") ax2f.set_ylim(1e-3, 5) ax2f.set_xlabel("Frequency [MHz]") ax2f.set_xlim(100, 500) ax2f.semilogy(True) if sim_present: sim = station.get_sim_station() fig.suptitle("Simulation: Zenith {:.1f}, Azimuth {:.1f}".format(np.rad2deg(sim[stnp.zenith]), np.rad2deg(sim[stnp.azimuth]))) else: fig.suptitle("Data: reconstructed zenith {:.1f}, azimuth {:.1f}".format(np.rad2deg(zenith), np.rad2deg(azimuth))) fig.tight_layout() fig.subplots_adjust(top=0.95) if(debug_plotpath is not None): fig.savefig(os.path.join(debug_plotpath, 'run_{:05d}_event_{:06d}_efield.png'.format(evt.get_run_number(), evt.get_id()))) plt.close(fig) # plot antenna response and channels fig, ax = plt.subplots(len(V), 3, sharex='col', sharey='col') for iCh in range(len(V)): mask = ff > 100 ax[iCh, 0].plot(ff[mask], np.abs(efield_antenna_factor[iCh][0])[mask], label="theta, channel {}".format(use_channels[iCh]), lw=lw) ax[iCh, 0].plot(ff[mask], np.abs(efield_antenna_factor[iCh][1])[mask], label="phi, channel {}".format(use_channels[iCh]), lw=lw) ax[iCh, 0].legend(fontsize='xx-small') ax[iCh, 0].set_xlim(100, 500) ax[iCh, 1].set_xlim(400, 600) ax[iCh, 2].set_xlim(400, 600) ax[iCh, 1].plot(times, V_timedomain[iCh] / units.micro / units.V, lw=lw) ax[iCh, 1].plot(times, analytic_traces[iCh] / units.micro / units.V, '--', lw=lw) ax[iCh, 2].plot(times, (V_timedomain[iCh] - analytic_traces[iCh]) / units.micro / units.V, '-', lw=lw) ax[iCh, 0].set_ylabel("H [m]") ax[iCh, 1].set_ylabel(r"V [$\mu$V]") ax[iCh, 2].set_ylabel(r"$\Delta$V [$\mu$V]") RMS = det.get_noise_RMS(station.get_id(), 0) ax[iCh, 1].text(0.6, 0.8, 'S/N={:.1f}'.format(np.max(np.abs(V_timedomain[iCh])) / RMS), transform=ax[iCh, 1].transAxes) ax[0][2].set_ylim(ax[0][1].get_ylim()) ax[-1, 1].set_xlabel("time [ns]") ax[-1, 2].set_xlabel("time [ns]") ax[-1, 0].set_xlabel("frequency [MHz]") fig.tight_layout() if(debug_plotpath is not None): fig.savefig(os.path.join(debug_plotpath, 'run_{:05d}_event_{:06d}_channels.png'.format(evt.get_run_number(), evt.get_id()))) plt.close(fig)
def run(self, evt, station, det, debug=False): """ reconstructs quantities for electric field Parameters ---------- evt: event station: station det: detector debug: bool set debug """ for electric_field in station.get_electric_fields(): trace_copy = copy.copy(electric_field.get_trace()) # calculate hilbert envelope envelope = np.abs(signal.hilbert(trace_copy)) envelope_mag = np.linalg.norm(envelope, axis=0) signal_time_bin = np.argmax(envelope_mag) signal_time = electric_field.get_times()[signal_time_bin] electric_field[efp.signal_time] = signal_time # low_pos = np.int(130 * units.ns * electric_field.get_sampling_rate()) up_pos = np.int(210 * units.ns * electric_field.get_sampling_rate()) if(debug): fig, ax = plt.subplots(1, 1) sc = ax.scatter(trace_copy[1, low_pos:up_pos], trace_copy[2, low_pos:up_pos], c=electric_field.get_times()[low_pos:up_pos], s=5) fig.colorbar(sc, ax=ax) ax.set_aspect('equal') ax.set_xlabel("eTheta") ax.set_ylabel("ePhi") fig.tight_layout() low_pos, up_pos = hp.get_interval(envelope_mag, scale=0.5) v_start = trace_copy[:, signal_time_bin] v_avg = np.zeros(3) for i in range(low_pos, up_pos + 1): v = trace_copy[:, i] alpha = hp.get_angle(v_start, v) if(alpha > 0.5 * np.pi): v *= -1 v_avg += v pole = np.arctan2(np.abs(v_avg[2]), np.abs(v_avg[1])) electric_field[efp.polarization_angle] = pole logger.info("average e-field vector = {:.4g}, {:.4g}, {:.4g} -> polarization = {:.1f}deg".format(v_avg[0], v_avg[1], v_avg[2], pole / units.deg)) trace = electric_field.get_trace() if(debug): fig, ax = plt.subplots(1, 1) tt = electric_field.get_times() dt = 1. / electric_field.get_sampling_rate() ax.plot(tt / units.ns, trace[1] / units.mV * units.m) ax.plot(tt / units.ns, trace[2] / units.mV * units.m) ax.plot(tt / units.ns, envelope_mag / units.mV * units.m) ax.vlines([low_pos * dt, up_pos * dt], 0, envelope_mag.max() / units.mV * units.m) ax.vlines([signal_time - self.__signal_window_pre, signal_time + self.__signal_window_post], 0, envelope_mag.max() / units.mV * units.m, linestyles='dashed') times = electric_field.get_times() mask_signal_window = (times > (signal_time - self.__signal_window_pre)) & (times < (signal_time + self.__signal_window_post)) mask_noise_window = np.zeros_like(mask_signal_window, dtype=np.bool) if(self.__noise_window > 0): mask_noise_window[np.int(np.round((-self.__noise_window - 141.) * electric_field.get_sampling_rate())):np.int(np.round(-141. * electric_field.get_sampling_rate()))] = np.ones(np.int(np.round(self.__noise_window * electric_field.get_sampling_rate())), dtype=np.bool) # the last n bins signal_energy_fluence = trace_utilities.get_electric_field_energy_fluence(trace, times, mask_signal_window, mask_noise_window) dt = times[1] - times[0] signal_energy_fluence_error = np.zeros(3) if(np.sum(mask_noise_window)): RMSNoise = np.sqrt(np.mean(trace[:, mask_noise_window] ** 2, axis=1)) signal_energy_fluence_error = (4 * np.abs(signal_energy_fluence / self.__conversion_factor_integrated_signal) * RMSNoise ** 2 * dt + 2 * (self.__signal_window_pre + self.__signal_window_post) * RMSNoise ** 4 * dt) ** 0.5 signal_energy_fluence_error *= self.__conversion_factor_integrated_signal electric_field.set_parameter(efp.signal_energy_fluence, signal_energy_fluence) electric_field.set_parameter_error(efp.signal_energy_fluence, signal_energy_fluence_error) logger.info("f = {} +- {}".format(signal_energy_fluence / units.eV * units.m2, signal_energy_fluence_error / units.eV * units.m2)) # calculate polarization angle from energy fluence x = np.abs(signal_energy_fluence[1]) ** 0.5 y = np.abs(signal_energy_fluence[2]) ** 0.5 sx = signal_energy_fluence_error[1] * 0.5 sy = signal_energy_fluence_error[2] * 0.5 pol_angle = np.arctan2(y, x) pol_angle_error = 1. / (x ** 2 + y ** 2) * (y ** 2 * sx ** 2 + x ** 2 * sy ** 2) ** 0.5 # gaussian error propagation logger.info("polarization angle = {:.1f} +- {:.1f}".format(pol_angle / units.deg, pol_angle_error / units.deg)) electric_field.set_parameter(efp.polarization_angle, pol_angle) electric_field.set_parameter_error(efp.polarization_angle, pol_angle_error) # compute expeted polarization site = det.get_site(station.get_id()) exp_efield = hp.get_lorentzforce_vector(electric_field[efp.zenith], electric_field[efp.azimuth], hp.get_magnetic_field_vector(site)) cs = coordinatesystems.cstrafo(electric_field[efp.zenith], electric_field[efp.azimuth], site=site) exp_efield_onsky = cs.transform_from_ground_to_onsky(exp_efield) exp_pol_angle = np.arctan2(np.abs(exp_efield_onsky[2]), np.abs(exp_efield_onsky[1])) logger.info("expected polarization angle = {:.1f}".format(exp_pol_angle / units.deg)) electric_field.set_parameter(efp.polarization_angle_expectation, exp_pol_angle)