예제 #1
0
def main():
    try:
        # Setup argument parser
        parser = ArgumentParser(
            description="GoogleNet for image classification")
        parser.add_argument("-p", "--port", default=9999, help="listen port")
        parser.add_argument("-C", "--use_cpu", action="store_true")
        parser.add_argument("--parameter_file",
                            default="bvlc_googlenet.pickle",
                            help="relative path")

        # Process arguments
        args = parser.parse_args()
        port = args.port

        # start to train
        agent = Agent(port)
        serve(agent, args.use_cpu, args.parameter_file)
        agent.stop()

    except SystemExit:
        return
    except:
        traceback.print_exc()
        sys.stderr.write("  for help use --help \n\n")
        return 2
예제 #2
0
def main():
    try:
        # Setup argument parser
        parser = ArgumentParser(description=\
                                "InceptionV3 and V4 for image classification")
        parser.add_argument("--model", choices=['v3', 'v4'], default='v4')
        parser.add_argument("-p", "--port", default=9999, help="listen port")
        parser.add_argument("-C", "--use_cpu", action="store_true")
        parser.add_argument("--parameter_file",
                            default="inception_v4.pickle",
                            help="relative path")

        # Process arguments
        args = parser.parse_args()
        port = args.port

        # start to train
        agent = Agent(port)
        serve(agent, args.model, args.use_cpu, args.parameter_file)
        agent.stop()

    except SystemExit:
        return
    except Exception:
        traceback.print_exc()
        sys.stderr.write("  for help use --help \n\n")
        return 2
예제 #3
0
def main():
    try:
        # Setup argument parser
        parser = ArgumentParser(description=\
                                "InceptionV3 and V4 for image classification")
        parser.add_argument("--model", choices=['v3', 'v4'], default='v4')
        parser.add_argument("-p", "--port", default=9999, help="listen port")
        parser.add_argument("-C", "--use_cpu", action="store_true")
        parser.add_argument("--parameter_file", default="inception_v4.pickle",
                            help="relative path")

        # Process arguments
        args = parser.parse_args()
        port = args.port

        # start to train
        agent = Agent(port)
        serve(agent, args.model, args.use_cpu, args.parameter_file)
        agent.stop()

    except SystemExit:
        return
    except:
        traceback.print_exc()
        sys.stderr.write("  for help use --help \n\n")
        return 2
예제 #4
0
def main():
    try:
        # Setup argument parser
        parser = ArgumentParser(description="VGG inference")

        parser.add_argument("--port", default=9999, help="listen port")
        parser.add_argument("--use_cpu",
                            action="store_true",
                            help="If set, load models onto CPU devices")
        parser.add_argument("--parameter_file", default="")
        parser.add_argument("--depth",
                            type=int,
                            choices=[11, 13, 16, 19],
                            default='11')
        parser.add_argument("--batchnorm",
                            action='store_true',
                            help='use batchnorm or not')

        # Process arguments
        args = parser.parse_args()
        port = args.port

        # start to train
        agent = Agent(port)

        net = model.create_net(args.depth, 1000, args.batchnorm, args.use_cpu)
        if args.use_cpu:
            print('Using CPU')
            dev = device.get_default_device()
        else:
            print('Using GPU')
            dev = device.create_cuda_gpu()
            net.to_device(dev)
        model.init_params(net, args.parameter_file)
        print('Finish loading models')

        labels = np.loadtxt('synset_words.txt', str, delimiter='\t ')
        serve(net, labels, dev, agent)

        # acc = evaluate(net, '../val_list.txt',  'image/val', dev)
        # print acc

        # wait the agent finish handling http request
        agent.stop()
    except SystemExit:
        return
    except:
        traceback.print_exc()
        sys.stderr.write("  for help use --help \n\n")
        return 2
예제 #5
0
def main():
    try:
        # Setup argument parser
        parser = ArgumentParser(description="Wide residual network")

        parser.add_argument("--port", default=9999, help="listen port")
        parser.add_argument("--use_cpu",
                            action="store_true",
                            help="If set, load models onto CPU devices")
        parser.add_argument("--parameter_file", default="wrn-50-2.pickle")
        parser.add_argument("--model",
                            choices=['resnet', 'wrn', 'preact', 'addbn'],
                            default='wrn')
        parser.add_argument("--depth",
                            type=int,
                            choices=[18, 34, 50, 101, 152, 200],
                            default='50')

        # Process arguments
        args = parser.parse_args()
        port = args.port

        # start to train
        agent = Agent(port)

        net = model.create_net(args.model, args.depth, args.use_cpu)
        if args.use_cpu:
            print('Using CPU')
            dev = device.get_default_device()
        else:
            print('Using GPU')
            dev = device.create_cuda_gpu()
            net.to_device(dev)
        model.init_params(net, args.parameter_file)
        print('Finish loading models')

        labels = np.loadtxt('synset_words.txt', str, delimiter='\t ')
        serve(net, labels, dev, agent)

        # acc = evaluate(net, '../val_list.txt',  'image/val', dev)
        # print acc

        # wait the agent finish handling http request
        agent.stop()
    except SystemExit:
        return
    except:
        traceback.print_exc()
        sys.stderr.write("  for help use --help \n\n")
        return 2
def main():
    '''Command line options'''
    try:
        # Setup argument parser
        parser = ArgumentParser(description="Train CNN Readmission Model")
        parser.add_argument('-inputfolder', type=str, help='inputfolder')
        parser.add_argument('-outputfolder', type=str, help='outputfolder')
        parser.add_argument('-visfolder', type=str, help='visfolder')
        parser.add_argument('-trainratio',
                            type=float,
                            help='ratio of train samples')
        parser.add_argument('-validationratio',
                            type=float,
                            help='ratio of validation samples')
        parser.add_argument('-testratio',
                            type=float,
                            help='ratio of test samples')
        parser.add_argument('-p',
                            '--port',
                            default=9989,
                            help='listening port')
        parser.add_argument('-C', '--use_cpu', action="store_true")
        parser.add_argument('--max_epoch', default=100)

        # Process arguments
        args = parser.parse_args()
        port = args.port

        use_cpu = args.use_cpu
        if use_cpu:
            print("runing with cpu")
            dev = device.get_default_device()
        else:
            print("runing with gpu")
            dev = device.create_cuda_gpu()

        # start to train
        agent = Agent(port)
        train(args.inputfolder, args.outputfolder, args.visfolder,
              args.trainratio, args.validationratio, args.testratio, dev,
              agent, args.max_epoch, use_cpu)
        # wait the agent finish handling http request
        agent.stop()
    except SystemExit:
        return
    except:
        # p.terminate()
        traceback.print_exc()
        sys.stderr.write("  for help use --help \n\n")
예제 #7
0
def main():
    try:
        # Setup argument parser
        parser = ArgumentParser(description='DenseNet inference')

        parser.add_argument("--port", default=9999, help="listen port")
        parser.add_argument("--use_cpu",
                            action="store_true",
                            help="If set, load models onto CPU devices")
        parser.add_argument("--parameter_file", default="densenet-121.pickle")
        parser.add_argument("--depth",
                            type=int,
                            choices=[121, 169, 201, 161],
                            default=121)

        parser.add_argument('--nb_classes', default=1000, type=int)

        # Process arguments
        args = parser.parse_args()
        port = args.port

        # start to train
        agent = Agent(port)

        net = model.create_net(args.depth, args.nb_classes, 0, args.use_cpu)
        if args.use_cpu:
            print('Using CPU')
            dev = device.get_default_device()
        else:
            print('Using GPU')
            dev = device.create_cuda_gpu()
            net.to_device(dev)
        print('start to load parameter_file')
        model.init_params(net, args.parameter_file)
        print('Finish loading models')

        labels = np.loadtxt('synset_words.txt', str, delimiter='\t ')
        serve(net, labels, dev, agent)
        # wait the agent finish handling http request
        agent.stop()

    except SystemExit:
        return
    except:
        traceback.print_exc()
        sys.stderr.write("  for help use --help \n\n")
        return 2
예제 #8
0
def main():
    try:
        # Setup argument parser
        parser = ArgumentParser(description="Wide residual network")

        parser.add_argument("--port", default=9999, help="listen port")
        parser.add_argument("--use_cpu", action="store_true",
                            help="If set, load models onto CPU devices")
        parser.add_argument("--parameter_file", default="wrn-50-2.pickle")
        parser.add_argument("--model", choices=['resnet', 'wrn', 'preact',
                                                'addbn'], default='wrn')
        parser.add_argument("--depth", type=int, choices=[18, 34, 50, 101,
                                                          152, 200],
                            default='50')

        # Process arguments
        args = parser.parse_args()
        port = args.port

        # start to train
        agent = Agent(port)

        net = model.create_net(args.model, args.depth, args.use_cpu)
        if args.use_cpu:
            print('Using CPU')
            dev = device.get_default_device()
        else:
            print('Using GPU')
            dev = device.create_cuda_gpu()
            net.to_device(dev)
        model.init_params(net, args.parameter_file)
        print('Finish loading models')

        labels = np.loadtxt('synset_words.txt', str, delimiter='\t ')
        serve(net, labels, dev, agent)

        # acc = evaluate(net, '../val_list.txt',  'image/val', dev)
        # print acc

        # wait the agent finish handling http request
        agent.stop()
    except SystemExit:
        return
    except:
        traceback.print_exc()
        sys.stderr.write("  for help use --help \n\n")
        return 2
예제 #9
0
def main():
    try:
        # Setup argument parser
        parser = ArgumentParser(description="VGG inference")

        parser.add_argument("--port", default=9999, help="listen port")
        parser.add_argument("--use_cpu", action="store_true",
                            help="If set, load models onto CPU devices")
        parser.add_argument("--parameter_file", default="")
        parser.add_argument("--depth", type=int, choices=[11, 13, 16, 19],
                            default='11')
        parser.add_argument("--batchnorm", action='store_true',
                            help='use batchnorm or not')

        # Process arguments
        args = parser.parse_args()
        port = args.port

        # start to train
        agent = Agent(port)

        net = model.create_net(args.depth, 1000, args.batchnorm, args.use_cpu)
        if args.use_cpu:
            print('Using CPU')
            dev = device.get_default_device()
        else:
            print('Using GPU')
            dev = device.create_cuda_gpu()
            net.to_device(dev)
        model.init_params(net, args.parameter_file)
        print('Finish loading models')

        labels = np.loadtxt('synset_words.txt', str, delimiter='\t ')
        serve(net, labels, dev, agent)

        # acc = evaluate(net, '../val_list.txt',  'image/val', dev)
        # print acc

        # wait the agent finish handling http request
        agent.stop()
    except SystemExit:
        return
    except:
        traceback.print_exc()
        sys.stderr.write("  for help use --help \n\n")
        return 2