예제 #1
0
파일: march24.py 프로젝트: cmthompson/data
def Mar26():
    a = RamanSpectrum('/home/chris/Documents/DataWeiss/150326/orangedot-nativeligand_20.txt')
    print type(a)
    a.smooth()
    
    a.autobaseline((400,520),order =0)
    a.autobaseline((520,1756),order = 4)
    a.values[:]*=10
    a.plot(label = '633 nm')
    a = RamanSpectrum('/home/chris/Documents/DataWeiss/150326/orangedot-nativeligand_21.txt')
    a = smooth(a)
    a = autobaseline(a,(2482,3600),4)
    a*=10
    a.plot(label = '633 nm')
    b = CdODPARef-2597
    b.plot(label = 'reference')
    
    a = RamanSpectrum('/home/chris/Documents/DataWeiss/150326/orangedot-nativeligand_10.txt')
    a = smooth(a)
    a-=161
    a*=25
   
    a.plot(label = '785 nm')
    
    return 0
예제 #2
0
파일: May29.py 프로젝트: cmthompson/data
def May29b():
    r = RamanSpectrum('/home/chris/Documents/DataWeiss/150521/150521_05.txt') ## stoichiometric ODPA capped CdSe
    r = removespikes(r)
    
    r.autobaseline((119,286), order = 0)
    r.autobaseline((286,1151), order = 4, join = 'start')
    r.autobaseline((1151,1489), order = 3, join = 'start')
    r.smooth()
    
    r.plot()
    
    
    
    r = RamanSpectrum('/home/chris/Documents/DataWeiss/150408/150408_02.txt')  # Cd enriched CdSe
    r = removespikes(r)
    r.autobaseline((272,1746), order = 2)
    #r.autobaseline((1151,1489), order = 3, join = 'start')
    r.plot()
    
    r = RamanSpectrum('/home/chris/Documents/DataWeiss/150516/150516_08.txt')  
    r = removespikes(r)
    
    r.autobaseline((272,1746), order = 2)
    
    r.smooth()
    
    r.plot()
    

    
    
    
    legend(['stoic', 'rich apr8', 'rich may16'])
    return 0
예제 #3
0
파일: Jan18.py 프로젝트: cmthompson/data
def Feb1():  ## 
    """Resonance Raman of CdSe dots with PPA in water.  February 1"""
    clf()
    a473 =  RamanSpectrum('/home/chris/Dropbox/DataWeiss/160201/160201_07.txt')
    a633 =  RamanSpectrum('/home/chris/Dropbox/DataWeiss/160201/160201_08.txt')
    a633=SPIDcorrect633(a633)
    a473.autobaseline((120,700),order = 3)
    a633.autobaseline((120,700),order = 3)
    a473.plot()
    a633.plot()
    legend(['473','633'])
    return 0
예제 #4
0
def Fig1(show_vib_numbers = True): ### reference spectra of methylbenzenethiol
    figure(figsize = (6,6))
    
    MBT = copy(MeOTPRef)
    MBT-=min(MBT[0:2000])
    MBT/=max(MBT[0:2000])
    

    CdMBT = copy(CdMeOTPRef)
    CdMBT.index = array(CdMBT.index)-3
    CdMBT-=min(CdMBT[0:2000])
    CdMBT/=max(CdMBT[0:2000])
    
    a = RamanSpectrum('/home/chris/Documents/DataWeiss/150408/150408_15.txt')
    
    a.autobaseline((268,440,723,915,1200,1391,1505,1680),specialoption='points', order = 4)
    a.smooth(window_len=11,window = 'SG')
    a[:]/=3000
                  
    
    MBT.plot(color = 'b',linewidth = 2)
    CdMBT.plot(color = 'k',linewidth = 2)
    a.plot(color = 'r',linewidth = 2) 
    xlim(500,1675)
    ylim(0,1.5)
    
    ylabel('Intensity (a.u.)')
    xlabel('Raman shift (cm$^{-1}$)')
         
                    
    ####Assignments
    assignmentfontsize = 10
   # annotate('Ring bending',(635,0.2), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='vertical')
    annotate('Ring bending',(647,0.38), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='vertical')
    annotate('Ring stretching',(1105,1.05), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='horizontal')
    annotate('Ring stretching',(806,1.1), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='horizontal')
    annotate('CSH bending ',(914,0.25), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='vertical')
 #   annotate('CH bending ',(1190,0.33), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='vertical')
    #annotate('Ring stretching',(1300,0.5), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='vertical')
   # annotate('CH bending',(1382,0.1), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='vertical')
    annotate('CC ring stretching',(1607,0.5), xycoords = 'data',horizontalalignment = 'center',verticalalignment = 'bottom',color = 'k',size = assignmentfontsize,rotation ='vertical')

    legend(['MTP', 'CdMTP$_2$', 'QDs-MTP'])

    matplotlib.pyplot.tight_layout()
    return 0
def OPAMBTExchange():
    figure()
    a = RamanSpectrum('/home/chris/Documents/DataWeiss/150707/150707_02.txt')
    b = RamanSpectrum('/home/chris/Documents/DataWeiss/150707/150707_03.txt')
    a[:]*=5
    b[:]*=5
    subplot(121)
    a.plot()
    CdMethylTPRef.plot()
    legend(['new','old'])
    r = fitspectrum(a,(1070,1110),'OneGaussian',[25000,1088,10,0,0])
    plot(r.x,r.y, 'k',linewidth = 2)
    
    r = fitspectrum(CdMethylTPRef,(1070,1110),'OneGaussian',[25000,1088,10,0,0])
    plot(r.x,r.y,'r' ,linewidth = 2)    
    
    subplot(122)
    b.plot()
    CdMeOTPRef.plot()
    legend(['new','old'])
    
    r = fitspectrum(b,(1070,1110),'OneGaussian',[60000,1088,10,0,0])
    plot(r.x,r.y,'k',linewidth = 2)
    
    r = fitspectrum(CdMeOTPRef,(1070,1110),'OneGaussian',[6000,1088,10,0,0])
    plot(r.x,r.y,'r', linewidth = 2)    
    
    figure()
    June22()
    c= RamanSpectrum('/home/chris/Documents/DataWeiss/150707/150707_05.txt')
    
    c.autobaseline((200,2000),order= 4)
    c[:]+=4000
    c.plot()
    
    
    figure()
    d= RamanSpectrum('/home/chris/Documents/DataWeiss/150707/150707_06.txt')
    d.autobaseline((200,2000),order= 4)
    d[:]*=10
    d.plot()
    a.plot()
    legend(['exchanged', 'reference'])
    return 0
예제 #6
0
def Apr8Raman():
    os.chdir('/home/chris/Documents/DataWeiss/150408')
    fig = figure()
    a = RamanSpectrum('150408_15.txt')
    a.autobaseline((268,440,723,915,1200,1391,1505,1680),specialoption='points', order = 4)
    a.smooth(window_len=11,window = 'SG')
    #a+=800
    
    b = RamanSpectrum('150408_02.txt')
    #b = autobaseline(b,(200,1700),leaveout=(200,300), order = 4)
    b.autobaseline((268,440,723,915,1200,1391,1505,1680),specialoption='points', order = 4)
    b.smooth(window_len=11,window = 'SG')
    
    (normalize(MeOTPRef,(0,10000))*4000+1000).plot(color ='b',linewidth=2)
    a.plot(color = 'k',linewidth = 2)
    b.plot(color = 'r', linewidth = 2)
    
    ylim(-500,6000)
    xlim(200,1675)
    
    
    
    legend(['MeOTP ref', 'MeOTP treated','Native ligand only'])
    
    ylabel('Raman Intensity (a.u.)')
    xlabel('Raman Shift (cm$^{-1}$)')
    
    figure()
    title('Washing')
    a = RamanSpectrum('150408_11.txt')
    b = RamanSpectrum('150408_02.txt')
    a = autobaseline(a, (200,1700),leaveout=(200,300),order=4)
    b = autobaseline(b,(200,1700),leaveout=(200,300), order = 4)
   
    (normalize(ODPARef,(0,10000))*4000+2000).plot(color ='b',linewidth=2, label='ODPA Ref')
    a.plot(color = 'r',label='washed 5x')
    b.plot(color = 'k',label='washed 4x')
    #a= fitspectrum(b,(900,1150),'SixGaussian', [200,200,200,200,200,200,950,990,1026,1064,1087,1115,10,10,10,10,10,10,1,-100])
    #plot(a[1],a[2],linewidth =3,label='fit')
    legend()
    ylabel('Raman Intensity (a.u.)')
    xlabel('Raman Shift (cm$^{-1}$)')
    return 0
예제 #7
0
파일: march24.py 프로젝트: cmthompson/data
def Apr8Raman_forVictor():
    os.chdir('/home/chris/Documents/DataWeiss/150408')
    fig = figure(figsize=(12,6))
    subplot(121)
    a = RamanSpectrum('150408_15.txt')
    a = autobaseline(a, (200,1700),leaveout=(200,300),order=4)
    a+=800
    
    
    
    b = RamanSpectrum('150408_02.txt')
    b = autobaseline(b,(200,1700),leaveout=(200,300), order = 4)
    
    (normalize(MeOTPRef,(0,10000))*4000+2000).plot(color ='b',linewidth=2,label = 'thiophenolate reference')
    a.plot(color = 'k',linewidth = 2)
    b.plot(color = 'r', linewidth = 2)
    
    ylim(-500,10000)
    xlim(740,1675)
 
    arrowprops={'width':1,'headwidth':3,'color':'k'}
    ylabel('Raman Intensity (a.u.)')
    xlabel('Raman Shift (cm$^{-1}$)')
    annotate('C-S-H bend', (913,2830),xytext = (913,3300), xycoords = 'data',arrowprops = arrowprops,horizontalalignment='center' )
    subplot(122)
    e = RamanSpectrum('150408_13.txt')
    e.autobaseline((2500,3600),leaveout=(200,300),order=2)
    e.autobaseline((2500,2800),leaveout=(200,300), order = 1,join='end')
    e+=800
    
    
    
    f = RamanSpectrum('150408_03.txt')
    f.autobaseline((2500,3600),leaveout=(200,300), order = 2)
    f.autobaseline((2500,2800),leaveout=(200,300), order = 1,join='end')
    
    (normalize(MeOTPRef,(0,10000))*4000+2000).plot(color ='b',linewidth=2)
    e.plot(color = 'k',linewidth = 2, )
    f.plot(color = 'r', linewidth = 2)
    annotate('S-H stretch', (2560,3370),xytext = (2600,4500), xycoords = 'data',arrowprops = arrowprops,horizontalalignment='center' )
   
    ylim(-500,10000)
    xlim(2500,3200)
    legend(['thiophenol reference','CdSe thiophenolate-treated','CdSe native ligand only'])
    
    ylabel('Raman Intensity (a.u.)')
    xlabel('Raman Shift (cm$^{-1}$)')

   # savetxt()

    return 0
예제 #8
0
def calculate_enchancement():
    global r,s
    #### Calc SERS enhancement on
    os.chdir('/home/chris/Documents/DataWeiss/150109')

    r = RamanSpectrum('1_MeTOP roughened Ag_1.txt')
    s = RamanSpectrum('2_MeOTP smooth silver_1.txt')
    r.autobaseline((500,1750),order=0)
    s.autobaseline((500,1750),order=0)
    on_roughened = calc_area(r,(1050,1130))*100 #### multiply, because used filter 0.01
    on_smooth = calc_area(s,(1050,1130))
    print 'hormalized area on roughened substrate =', on_roughened  
    
    print 'hormalized area on roughened substrate =', on_smooth
    r.plot(color = 'r')
    s.plot(color = 'k')
    legend(['roughened', 'smooth (x100)'],loc=2)
    annotate('x100', (0.6,0.7), xycoords = 'axes fraction', size = 24,color = 'k')
    print 'Approximate surface enhancement =',on_roughened/on_smooth
    xlabel('Raman Shift cm$^{-1}$')
    ylabel('Intensity a.u.')
    return 0
예제 #9
0
파일: Feb9.py 프로젝트: cmthompson/data
def Feb10():
    figure()
    a = RamanSpectrum('/home/chris/Documents/DataWeiss/150210/43_ long scan.SPE')
    
    
    adding  = pandas.Series([NaN]*len(arange(300,1500,0.5)),arange(300,1500,0.5))
    
    d=a.append(adding)
    
    d = d.interpolate(method='index')

    d = d[arange(300,1500,0.5)]
    
    e = FourierFilter(d,width = 1100)
    
    e.plot()
    
    
    b = RamanSpectrum('/home/chris/Documents/DataWeiss/150210/44.SPE')
    c=b+a
    a.autobaseline((300,1600),order = 4)
    #a = smooth(a,window_len=9)
    
    b.autobaseline((300,1600),order = 4)
    #b=smooth(b,window_len=9)
    
    #a.plot()
    #b.plot()
    
    c= autobaseline(c,(300,1600),order = 4)
    c = smooth(c, window_len=9)
    #c.plot()
    legend(['a','d','e'])
    
   
    
    return d
def CdMBTinDMF():
    clf()
    a = RamanSpectrum('/home/chris/Documents/DataWeiss/150709/150709_01.txt')#### DMFonly
    b = RamanSpectrum('/home/chris/Documents/DataWeiss/150709/150709_02.txt')#### 510mg DMF with 200 mgCdMBT
    a.autobaseline((523,935,1336,1780),order = 3,specialoption='points')
    b.autobaseline((523,935,1336,1780),order = 3,specialoption='points')
    a[:]*=4720
    a[:]/=6256
   
    c = RamanSpectrum(b-a)
    c.plot()
    r = fitspectrum(c,(1070,1105),'xVoigt',[10000,1088,15,6,0,0])
    plot(r.x,r.y,'s-',linewidth=2)
    for i in r.peaks:
        plot(r.x,i)
    print r.areas
    print r.params[0][2:4]
    CdMethylTPRef.plot()
        
    
#    def difference(c): return sum((b[200:1700]-c*a[200:1700])**2)
#    r = minimize(difference,[1])
    
    return r.params
예제 #11
0
def Dec15():
    """PPAcapped CdS in water Raman"""
    cla()
    ODPARef.plot()
    OPARef.plot()
    
    ax = subplot(111)
    a = RamanSpectrum('151215/151215_04.txt')#,name='DMF 65 mM')
    a.autobaseline((295,350,473,580,755,988,1188,1317,1756,1853,2296,2400,2600),join='end',order = 8,specialoption='points')    
    a.plot()
    b=RamanSpectrum('151215/151215_02.txt')#,name='7uM PPAcapped dots in water/DMF')
    b[:]/=3
    b.autobaseline((295,350,473,580,755,961,1317,1756,1853,2296,2400,2600),join='end',order = 8,specialoption='points')    
    b.plot()
    c=RamanSpectrum('151215/151215_05.txt')#,name = 'PPA')
   
    c.autobaseline((295,350,473,580,755,961,1317,1756,1853,2296,2400,2600),join='end',order = 8,specialoption='points')    
    c.plot()
    
    
    quickoffset(ax,rnge=(200,1600))
    return 0 
예제 #12
0
파일: May29.py 프로젝트: cmthompson/data
def CdSvsCdSe():
    r = RamanSpectrum('/home/chris/Documents/DataWeiss/150521/150521_05.txt')
    r = removespikes(r)
    
    r.autobaseline((119,286), order = 0)
    r.autobaseline((286,1151), order = 4, join = 'start')
    r.autobaseline((1151,1560), order = 3, join = 'start')
    r.smooth()
    
    r.plot(label = 'CdSe')
    
    r = RamanSpectrum('/home/chris/Documents/DataWeiss/150601/150601_07.txt')
    c = RamanSpectrum('/home/chris/Documents/DataWeiss/150601/150601_08.txt')
    
    r = add_RamanSpectra(r,c)
    r = SPIDcorrect633(r)
    r = removespikes(r)
    r.autobaseline((145,1148), order = 3)
    r.autobaseline((1148,1253), order = 1,join='start')
    r.autobaseline((1253,2000), order = 3,join='start')
    r.autobaseline((2000,3600), order = 3,join='start')
    r.values[:] = r.values[:]*5
    #r.smooth()
    
    r.plot(label='CdS')
    legend(['CdSe','CdS'])
    return 0
예제 #13
0
파일: May29.py 프로젝트: cmthompson/data
def June1():
    clf()
    subplot(122)
    r = RamanSpectrum('/home/chris/Documents/DataWeiss/150601/150601_07.txt')
    c = RamanSpectrum('/home/chris/Documents/DataWeiss/150601/150601_08.txt')
    
    r = add_RamanSpectra(r,c)
    r = SPIDcorrect633(r)
    r = removespikes(r)
    r.autobaseline((145,1148), order = 3)
    r.autobaseline((1148,1253), order = 1,join='start')
    r.autobaseline((1253,2000), order = 3,join='start')
    r.autobaseline((2000,3600), order = 3,join='start')
    r.values[:] = r.values[:]*5
    #r.smooth()
    
    r.plot()
    
    r= RamanSpectrum('/home/chris/Documents/DataWeiss/150601/150601_09.txt')
    c = RamanSpectrum('/home/chris/Documents/DataWeiss/150601/150601_10.txt')
    
    r = add_RamanSpectra(r,c)
    r = SPIDcorrect633(r)
    #r = removespikes(r)
    r.autobaseline((145,1148), order = 2)
    r.autobaseline((1148,1253), order = 1,join='start')
    r.autobaseline((1253,1700), order = 3,join='start')
    r.autobaseline((1700,3600), order = 3,join='start')
    r.values[:] = r.values[:]*5
    #r.smooth()
    r.plot()
    legend(['oleate', 'exchanged'])
    
    subplot(121)
    
    r = RamanSpectrum('/home/chris/Documents/DataWeiss/150529/150529_05.txt')
   
    r.autobaseline((147,2000), order =3)
    r.autobaseline((147,356), order = 1)
    r.autobaseline((356,389), order = 1, join = 'start')
    r.autobaseline((389,892), order = 1, join = 'start')
    r.autobaseline((892,923), order = 1, join = 'start')
    r.autobaseline((923,1185), order = 1, join = 'start')
    r.autobaseline((1185,1211), order = 1, join = 'start')
    r.autobaseline((1211,1679), order = 2, join = 'start')
    r.autobaseline((1679,1702), order = 2, join = 'start')
    r.autobaseline((1702,1900), order = 3, join = 'start')
    
    r.smooth()
    r.plot()
    
    r = RamanSpectrum('/home/chris/Documents/DataWeiss/150527/150527_06.txt')
    
    r = SPIDcorrect633(r)
    r.autobaseline((98,765), order = 4)
    r.autobaseline((765,839), order = 2, join = 'start')
    r.autobaseline((839,1456), order = 4, join = 'start')
    r.autobaseline((1456,1470), order = 2, join = 'start')
    r.autobaseline((1470,1900), order = 4, join = 'start')
    r.smooth()
    r.plot()
    
   
    legend(['exchanged', 'oleate'])
    return 0
예제 #14
0
def SH():
    
    
    
    os.chdir('/home/chris/Documents/DataWeiss/150728')
    cdmbt=copy.deepcopy(CdMethylTPRef)
    mbt=copy.deepcopy(MethylTPRef)
    cdmbt.autobaseline((193,4000),order = 0)
    mbt.autobaseline((193,4000),order = 0)

    mbt[:]/=95
    cdmbt[:]/=5
    cdmbt.to_csv('/home/chris/Dropbox/Ken/CdMBT2.csv')
   
    
    
    fig1 = figure(figsize=(6, 12)) 
    

    
   
    
    A = RamanSpectrum('filesA.txt')  ##450 eq
    B = RamanSpectrum('filesB.txt')  #200 eq MBT
    C = RamanSpectrum('filesC.txt') #100 eq MBT
    D = RamanSpectrum('filesD.txt') # 80 eq MBT
    E = RamanSpectrum('filesE.txt') # 50 eq MBT
    F = RamanSpectrum('filesF.txt')  #25 eq MBT
    G = RamanSpectrum('/home/chris/Documents/DataWeiss/150408/150408_03.txt')
    
    G.autobaseline((2500,2700,3100,3200),order = 2, specialoption='points')
    
    for z in [A,B,C,D,E,F]:
        #z = SPIDcorrect633(z)
        z.autobaseline((200,361),order = 1,join='start')
        z.autobaseline((361,394),order = 2,join='start')
        z.autobaseline((394,647),order = 2,join='start')
        z.autobaseline((647,682),order = 0,join='start')
        z.autobaseline((682,923),order = 0,join='start')
        z.autobaseline((923,955),order = 0,join='start')
        z.autobaseline((955,1187),order = 0,join='start')
        z.autobaseline((1187,1214),order = 0,join='start')
        z.autobaseline((1214,1437),order = 0,join='start')
        z.autobaseline((1437,1462),order = 0,join='start')
        z.autobaseline((1462,1675),order = 2,join='start')
        z.autobaseline((1675,1701),order = 0,join='start')
        z.autobaseline((1701,1900), order =2,join='start')
        z.autobaseline((1900,2400), order =5,join='start')
        z.autobaseline((2400,3200),order = 0,join='start')
        z.autobaseline((3200,3600),order = 0,join='start')
       # z.autobaseline((981,1013,1098,1141,1251,1491),order =3,specialoption='points', join='start')
        
        z[:]/=50
        z.smooth()
        z-=z[2402]
        
    for z in [G]:

        z.autobaseline((2400,3200),order = 0)
        z[:]/=50
        z.smooth()
        z-=z[2402]
        
        
    mbt[:]+=700 
    mbt.set_name('mmmmmm')
    A[:]*=2
    A[:]+=600
    B[:]+=500
    C[:]+=400
    D[:]+=300
    E[:]+=200
    F[:]+=100
    G[:]*=10
    
    for z in [mbt,A,B,C,D,E,F,G]:
        z.to_csv('/home/chris/Dropbox/Ken/SHregion/'+z.name[-5]+'.csv')
        
 
    
    mbt.plot()
    A.plot()
    B.plot()
    C.plot()
    D.plot()
    E.plot()
    F.plot()
    G.plot()
    
    fs = 14
    anx = 2605
    annotate('solid MBT',(anx,740), fontsize=fs)
    annotate('450 eq MBT',(anx,620), fontsize=fs)
    annotate('200 eq MBT',(anx,520), fontsize=fs)
    annotate('100 eq MBT',(anx,420), fontsize=fs)
    annotate('80 eq MBT',(anx,320), fontsize=fs)
    annotate('50 eq MBT',(anx,220), fontsize=fs)
    annotate('25 eq MBT',(anx,120), fontsize=fs)
    annotate('0 eq',(anx,10), fontsize=fs)    
    
    xlim(2500,3030)
    ylim(-20,1300)
    return 0


    
def SH():
    
    
    
    os.chdir('/home/chris/Documents/DataWeiss/150728')
    cdmbt=copy.copy(CdMethylTPRef)
    mbt=copy.copy(MethylTPRef)
    cdmbt.autobaseline((1000,1200),order = 0)
    mbt.autobaseline((1000,1200),order = 0)

    mbt[:]/=95
    cdmbt[:]/=5
    cdmbt.to_csv('/home/chris/Dropbox/Ken/CdMBT2.csv')
   
    
    
    fig1 = figure(figsize=(6, 12)) 
    

    
   
    
    A = RamanSpectrum('filesA.txt')  ##450 eq
    B = RamanSpectrum('filesB.txt')  #200 eq MBT
    C = RamanSpectrum('filesC.txt') #100 eq MBT
    D = RamanSpectrum('filesD.txt') # 80 eq MBT
    E = RamanSpectrum('filesE.txt') # 50 eq MBT
    F = RamanSpectrum('filesF.txt')  #25 eq MBT
    G = RamanSpectrum('/home/chris/Documents/DataWeiss/150408/150408_03.txt')
    
    G.autobaseline((2500,2700,3100,3200),order = 2, specialoption='points')
    for z in [A,B,C,D,E,F,G]:

        z.autobaseline((2400,3200),order = 0)
        z[:]/=50
        z.smooth()
        z-=z[2402]
        
        
    mbt[:]+=700 
    mbt.set_name('mmmmmm')
    A[:]*=2
    A[:]+=600
    B[:]+=500
    C[:]+=400
    D[:]+=300
    E[:]+=200
    F[:]+=100
    G[:]*=10
    
    for z in [mbt,A,B,C,D,E,F,G]:
        #z.to_csv('/home/chris/Dropbox/Ken/SHregion/'+z.name[-5]+'.csv')
        pass
 
    
    mbt.plot()
    A.plot()
    B.plot()
    C.plot()
    D.plot()
    E.plot()
    F.plot()
    G.plot()
    
    fs = 14
    anx = 2605
    annotate('solid MBT',(anx,740), fontsize=fs)
    annotate('450 eq MBT',(anx,620), fontsize=fs)
    annotate('200 eq MBT',(anx,520), fontsize=fs)
    annotate('100 eq MBT',(anx,420), fontsize=fs)
    annotate('80 eq MBT',(anx,320), fontsize=fs)
    annotate('50 eq MBT',(anx,220), fontsize=fs)
    annotate('25 eq MBT',(anx,120), fontsize=fs)
    annotate('0 eq',(anx,10), fontsize=fs)    
    
    xlim(2500,3030)
    ylim(-20,1300)
    return 0


    
def June30():
    """CdOPA references and some dots"""
    
    d = RamanSpectrum('/home/chris/Dropbox/DataWeiss/150622/150622_06.txt')   ###  pH 1
    a = RamanSpectrum('/home/chris/Dropbox/DataWeiss/150622/150622_07.txt')   ### pH 5
    b = RamanSpectrum('/home/chris/Dropbox/DataWeiss/150622/150622_08.txt')  ### pH 12
    c= RamanSpectrum('/home/chris/Dropbox/DataWeiss/150612/150612_01_CdSe.txt')  ## dots
    d.autobaseline((283,1989),order = 3)
    a.autobaseline((283,1989),order = 3)
    b.autobaseline((283,1989),order = 3)
    
    c.autobaseline((600,690,826,861,900,1196,1385,1515,1657),specialoption='points',order=7)
    
   #c[:]+=4500
    #b[:]+=3000
    #a[:]+=1500
    c.plot()
    b.plot()
    a.plot()
    #d.plot()
    
    legend(['dots','CdOPA pH12', 'pH 5', 'pH1'])
    a = RamanSpectrum('/home/chris/Dropbox/DataWeiss/150630/150623_2.txt')
    
    a.autobaseline((700,1500), order  = 0)
    b = RamanSpectrum('/home/chris/Dropbox/DataWeiss/150630/150623_3.txt')
    b.autobaseline((300,791), order =2)
    b.autobaseline((791,858),order = 0,join='start')
    b.autobaseline((858,2000),order =1,join='start')
    b.autobaseline((400,700,954,1495,1700),specialoption='points',order=3)
    #a.plot()
    c = add_RamanSpectra(a,b)
    
    b.plot()
   # OPARef.plot()
    return 0   
예제 #17
0
파일: May8.py 프로젝트: cmthompson/data
def May18():
    r = RamanSpectrum("/home/chris/Documents/DataWeiss/150518/150518_03b.txt")
    r.autobaseline((100, 763), order=3)
    r.autobaseline((763, 836), order=1, join="start")
    r.autobaseline((836, 1600), order=3, join="start")
    r.plot()

    r = RamanSpectrum("/home/chris/Documents/DataWeiss/150518/150518_05b.txt")
    r.autobaseline((100, 763), order=3)
    r.autobaseline((763, 836), order=1, join="start")
    r.autobaseline((836, 1650), order=3, join="start")
    r.plot()
    return 0
예제 #18
0
파일: apr24.py 프로젝트: cmthompson/data
def thiophenolfits():
    
        
    os.chdir('/home/chris/Documents/DataWeiss/150424')
    a  = RamanSpectrum('/home/chris/Documents/DataWeiss/150424/150424_01.txt')
    b = RamanSpectrum('/home/chris/Documents/DataWeiss/150424/150424_04.txt')
    c  = RamanSpectrum('/home/chris/Documents/DataWeiss/150424/150424_10.txt')
    d  = RamanSpectrum('/home/chris/Documents/DataWeiss/150430/150430_01.txt')
    e = RamanSpectrum('/home/chris/Documents/DataWeiss/150430/150430_03.txt')
    
    ax1 = gca()
    
        
    a = removespikes(a)
    a.smooth()
    a.smooth(window_len=21, window = 'SG')
    a.autobaseline((68, 322),order = 4)
    a.autobaseline((322, 767),order = 0,join='start')
    a.autobaseline((767, 838),order = 0,join='start')
    a.autobaseline((838, 1405),order = 2,join='start')
    a.autobaseline((1405,1466),order = 0,join='start')
    a.autobaseline((1466, 1974),order = 2,join='start')
        
    b = removespikes(b)
    b.smooth(window_len=21, window = 'SG')
    b.autobaseline((68, 322),order = 4)
    b.autobaseline((322, 767),order = 0,join='start')
    b.autobaseline((767, 838),order = 0,join='start')
    b.autobaseline((838, 1405),order = 2,join='start')
    b.autobaseline((1405,1466),order = 0,join='start')
    b.autobaseline((1466, 1974),order = 2,join='start')   
#    
    c = removespikes(c)
    c.smooth(window_len=21, window = 'SG')
    c.autobaseline((68, 322),order = 4)
    c.autobaseline((322, 767),order = 0,join='start')
    c.autobaseline((767, 838),order = 0,join='start')
    c.autobaseline((838, 1405),order = 2,join='start')
    c.autobaseline((1405,1466),order = 0,join='start')
    c.autobaseline((1466, 1974),order = 2,join='start')
    
    d = removespikes(d)
    d.smooth( window_len=21, window = 'SG')
    d.autobaseline((68, 322),order = 4)
    d.autobaseline((322, 767),order = 0,join='start')
    d.autobaseline((767, 838),order = 0,join='start')
    d.autobaseline((838, 1405),order = 2,join='start')
    d.autobaseline((1405,1466),order = 0,join='start')
    d.autobaseline((1466, 1974),order = 2,join='start')
    
    e = removespikes(e)
    e.smooth(window_len=21, window = 'SG')
    e.autobaseline((68, 322),order = 4)
    e.autobaseline((322, 767),order = 0,join='start')
    e.autobaseline((767, 838),order = 0,join='start')
    e.autobaseline((838, 1405),order = 2,join='start')
    e.autobaseline((1405,1466),order = 0,join='start')
    e.autobaseline((1466, 1974),order = 2,join='start')

    

    
    
    a[:]+=200#ax1.lines[0].set_ydata(ax1.lines[0].get_ydata()+200)
    b[:]+=500
    c[:]+=800
    d[:]+=1100
    e[:]+=1500
    
    a.plot(marker = 'o',markersize = 1)
    b.plot(marker = 'o',markersize = 1)
    c.plot(marker = 'o',markersize = 1)
    d.plot(marker = 'o',markersize = 1)
    e.plot(marker = 'o',markersize = 1)
    
    ylim(0,1800)
    xlim(68,1980)
    a_list = list()
    b_list = list()
    c_list = list()
    d_list = list()
    e_list = list()
    for w in (541,628,742,1574):
        z = fitspectrum(a,(w-30,w+30),'OneGaussian', [300, w,50, 0,50])
        if z ==-1:
            print 'fit awry'
            
    
        else:
            a_list.append(z[0])
            plot(z[1], z[2])
            
    z = fitspectrum(a,(1045,1130),'TwoGaussian', [225, 1067,20,250, 1095,20, -1,50])
    if z ==-1:
        print 'fit awry'
    else:
        a_list.append(z[0])
        plot(z[1], z[2])  
    
    ###############################################################    
    for w in (623,639,793,1086,1598):
        z = fitspectrum(b,(w-30,w+30),'OneGaussian', [300, w,50, 0,850])
        if z ==-1:
            print 'fit awry'
        else:
            b_list.append(z[0])
            plot(z[1], z[2])

    ###############################################################    
    for w in (144,206,499,623,636,795,1088,1178,1280,1591):
        z= fitspectrum(c,(w-30,w+30),'OneGaussian', [300, w,50, 0,1150])
        if z ==-1:
            print 'fit awry'
        else:
            c_list.append(z[0])
            plot(z[1], z[2])

            
    ###############################################################    
    for w in (88,122,262,496,538,628,724,1066,1087,1177,1561):
        z= fitspectrum(d,(w-30,w+30),'OneGaussian', [300, w,50, 0,1550])
        if z ==-1:
            print 'fit awry'
        else:
            d_list.append(z[0])
            plot(z[1], z[2])

            
    ###############################################################    
    for w in (242,631,813,1083,1157,1588):
        z= fitspectrum(e,(w-30,w+30),'OneGaussian', [300, w,50, 0,50])
        if z ==-1:
            print 'fit awry'
        else:
            e_list.append(z[0])
            plot(z[1], z[2])
   
    f = open('/home/chris/Documents/DataWeiss/150430/thiophenolsonDots.txt', 'w')
    f.write('\n\nchloro\n\n')
    for i in a_list:
        f.write(str(i[0])+'\n')
    f.write('\n\ncmethyl\n\n')
    for i in b_list:
        f.write(str(i[0])+'\n')
    f.write('\n\nmethoxy\n\n')
    for i in c_list:
        f.write(str(i[0])+'\n')
    f.write('\n\ncbromo\n\n')
    for i in d_list:
        f.write(str(i[0])+'\n')
    f.write('\n\ncfluoro\n\n')
    for i in e_list:
        f.write(str(i[0])+'\n')
    f.close()

#    fitspectrum(spectrum, rnge, func, guess)
    return (a_list,b_list,c_list,d_list,e_list)
예제 #19
0
파일: apr24.py 프로젝트: cmthompson/data
def May7():
    figure()
    a = RamanSpectrum('/home/chris/Documents/DataWeiss/150507/150507_01.txt')
    a.normalize()
    a.plot()
    ics('/home/chris/Orca/CdTP_bridge/CdTP_bridgeDFT.out',normalize = True)
    title('thiophenol')
    
    figure()    
    a = RamanSpectrum('/home/chris/Documents/DataWeiss/150507/150507_03.txt')
    a.normalize()
    a.plot()
    i = RamanSpectrum('/home/chris/Documents/DataWeiss/150508/150508_02.txt')
    i[:]/=1200
    i.smooth()
    i.autobaseline((70,450),leaveout=(70,340),order = 4)
    i.autobaseline((450,1650),order = 2, join='start')
    i.plot()
    ics('/home/chris/Orca/CdClTP/CdClTP.out',normalize = True,labelpeaks = False)
    
    figure()
    a = RamanSpectrum('/home/chris/Documents/DataWeiss/150507/150507_06.txt') ## bromocomplex
    a.autobaseline((70,450),leaveout=(70,340),order = 4)
    a.autobaseline((450,1650),order = 2, join='start')
    a.normalize()
    a.plot()
    i = RamanSpectrum('/home/chris/Documents/DataWeiss/150508/150508_08.txt')  ## bromo on dots
    i[:]/=1200
    i.smooth()
    i.autobaseline((70,450),leaveout=(70,340),order = 4)
    i.autobaseline((450,1650),order = 2, join='start')
    i.plot()
    ics('/home/chris/Orca/CdBrTP/CdBrTP.out',normalize = True,labelpeaks = False)
    
    
    
    return 0
def July1phosphonicacidtreated():
    
    a = RamanSpectrum('/home/chris/Dropbox/DataWeiss/150622/150622_07.txt')   ### pH 5
    b = RamanSpectrum('/home/chris/Dropbox/DataWeiss/150622/150622_08.txt')  ### pH 12
    c= RamanSpectrum('/home/chris/Dropbox/DataWeiss/150612/150612_01_CdSe.txt')  ## dots
   
    a.autobaseline((283,1989),order = 3)
    b.autobaseline((283,1989),order = 3)
    
    c.autobaseline((600,690,826,861,900,1196,1385,1515,1657),specialoption='points',order=7)
    
    c[:]+=4500
    b[:]+=3000
    a[:]+=1500
    c.plot()
    b.plot()
    a.plot()

    c= RamanSpectrum('/home/chris/Dropbox/DataWeiss/150701/files6phosphonate.txt'  )
    c.autobaseline((283,1989),order = 3)
    c[:]*=3
    c.plot()
    
    
    a = RamanSpectrum('/home/chris/Dropbox/DataWeiss/150630/150623_2.txt')
    
    a.autobaseline((700,1500), order  = 0)
    b = RamanSpectrum('/home/chris/Dropbox/DataWeiss/150630/150623_3.txt')
    b.autobaseline((300,791), order =2)
    b.autobaseline((791,858),order = 0,join='start')
    b.autobaseline((858,2000),order =1,join='start')
    b.autobaseline((400,700,954,1495,1700),specialoption='points',order=3)
    
    c = add_RamanSpectra(a,b)
    
    x = RamanSpectrum('/home/chris/Dropbox/DataWeiss/150623/150623_4.txt')
    b.plot()
    OPARef.plot()
    x.plot()
    legend(['dots','CdOPA pH12', 'pH 5','phosJuuly1', 'phosJune23', 'OPA ref','june23'])
    return 0   
def July1():
    
   
    
    
    ratiolist = list()
    native= RamanSpectrum('/home/chris/Dropbox/DataWeiss/150612/150612_01_CdSe.txt') ###### Native ligand only
    native[:]/=2
    native=removespikes(native)
    native.autobaseline((600,690,826,861,900,1196,1385,1515,1657),specialoption='points',order=7)
    native.smooth()
    
    a = RamanSpectrum('/home/chris/Documents/DataWeiss/150701/files1.txt') 
    b= RamanSpectrum('/home/chris/Documents/DataWeiss/150701/files2.txt')
    c= RamanSpectrum('/home/chris/Documents/DataWeiss/150701/files3.txt')
    d= RamanSpectrum('/home/chris/Documents/DataWeiss/150701/files4.txt')
    e= RamanSpectrum('/home/chris/Documents/DataWeiss/150701/files5.txt')
    
    #c = removespikes(c)
    #c = removespikes(c)
    
    
    correct = zeros(e.values.shape)
    for z in [a,b,c,d,e]:
        y = deepcopy(z)
        y.smooth()
        y.smooth()
        y.smooth()
        correct+= y/z
    correct/=5 

    ax1=figure().add_subplot(111)
    mbt = CdMethylTPRef.copy()
    mbt[:]/=10
    

    for z in [a,b,c,d,e]:

        z[:]*=correct
        z=removespikes(z)
        z.autobaseline((109,500),order=3, join='start')
        z.autobaseline((500,725),order=2, join='start')
        z.autobaseline((725,795),order=1, join='start')
        z.autobaseline((795,1363),order=2, join='start')
        z.autobaseline((1363,1430),order = 1, join = 'start')
        z.autobaseline((1430,1930),order = 4, join='start')
        z.autobaseline((200,555,613,764,1141,1321,1565,1700,1920),specialoption='points',order=7)
        z.smooth()

    
    mbt[:]+=3000
    a[:]+=1000
    b[:]+=600
    c[:]+=400
    d[:]+=200
    e[:]-=200
    
    native-=500
    
    lw = 2
    mbt.plot(linewidth = lw)
    guess = [50,100,100,1065,1080,1085,7,7,7,0,z[1110]] 
    for z in [a,b,c,d,e]:
        print z.name

        
        r = fitspectrum(z,(1050,1110),'ThreeGaussian',[50,100,500,1065,1078,1085,15,15,15,0,z[1110]] ) #r = fitspectrum(z,(1070,1110),'TwoGaussian',guess )
        
        ratio = r.areas[1]/r.areas[2]
        
        if z is a:
            r = fitspectrum(z,(1070,1110),'TwoGaussian',[100,1000,1078,1085,15,15,0,z[1110]] ) #r = fitspectrum(z,(1070,1110),'TwoGaussian',guess )
            ratio = r.areas[0]/r.areas[1]
        ratiolist.append(ratio)
        z.plot(linewidth = lw)
        print r.params[0]
        for p in r.peaks:
            ax1.plot(r.x,p,color = 'k',linewidth = 2)
        plot(r.x,r.y, color = 'k', linewidth = lw)
          
   


    native.plot(linewidth = lw)
    
    xlim(555,1700)
    ylim(-500,3000)
    
    #legend(['mbt solid','2035eq','713eq','502eq','80eq','58eq','native'])
    
    ax2=figure().add_subplot(111)
    print ratiolist
    ax2.plot([2035,713,502,80,58],ratiolist,'rs-')

    
    
    return 0
예제 #22
0
파일: May29.py 프로젝트: cmthompson/data
def May29():
    r = RamanSpectrum('/home/chris/Documents/DataWeiss/150529/150529_05.txt')  ### exchanged CdS dots with phosphonic acid (octadecyl)
    r.autobaseline((147,1678), order =3)
    r.autobaseline((147,356), order = 1)
    r.autobaseline((356,389), order = 1, join = 'start')
    r.autobaseline((389,892), order = 1, join = 'start')
    r.autobaseline((892,923), order = 1, join = 'start')
    r.autobaseline((923,1185), order = 1, join = 'start')
    r.autobaseline((1185,1211), order = 1, join = 'start')
    r.autobaseline((1211,1678), order = 1, join = 'start')
    r.smooth()
    r.plot()
    
    r = RamanSpectrum('/home/chris/Documents/DataWeiss/150527/150527_06.txt')  ### native ligands CdS dots
   
    r.autobaseline((98,764), order = 1)
    r.autobaseline((764,839), order = 1, join = 'start')
    r.autobaseline((839,1700), order = 2, join = 'start')
    r.smooth()
    
    r.plot()
    
    r = RamanSpectrum('/home/chris/Documents/DataWeiss/150521/150521_05.txt')  ## stoichiometric ODPA capped CdSe
    r = removespikes(r)
    
    r.autobaseline((119,286), order = 0)
    r.autobaseline((286,1151), order = 4, join = 'start')
    r.autobaseline((1151,1489), order = 3, join = 'start')
    r.smooth()
    
    r.plot()
    
    r = RamanSpectrum('/home/chris/Documents/DataWeiss/150408/150408_02.txt')   # Cd enriched CdSe
    r = removespikes(r)
    r.autobaseline((272,1746), order = 2)
    #r.autobaseline((1151,1489), order = 3, join = 'start')
    r.plot()
    legend(['exchanged', 'oleate', 'stoich','rich'])
    ylim(-100,2000)
    

    return 0
def DMFWash():
    clf()
    ax1 = gca()
    a = RamanSpectrum('/home/chris/Documents/DataWeiss/150709/150709_03.txt')#### sample A washed with DMF
    
    b = RamanSpectrum('/home/chris/Documents/DataWeiss/150709/150709_04.txt')# sa,[;e B washed with DMF]
    
    c = RamanSpectrum('/home/chris/Documents/DataWeiss/150709/150709_05.txt')##sample C washed with DMF
    d = RamanSpectrum('/home/chris/Documents/DataWeiss/150709/150709_06.txt')##sample C washed with DMF using 50x close up objective
    e= RamanSpectrum('/home/chris/Documents/DataWeiss/150709/150709_07.txt')##sample E washed with DMF
 
    for z in [a,b,c]:
        z.autobaseline((200,725),order=3, join='start')    
        z.autobaseline((725,800),order=0, join='start')
        z.autobaseline((800,1427),order=2, join='start')
        z.autobaseline((1427,1435),order=0, join='start')
        z.autobaseline((1435,2000),order=0, join='start')   
        z[:]-=z[1700]
        z.plot()
        
    d.autobaseline((520,1250),order = 3)
    e.autobaseline((520,1250),order = 3)
      
    d.plot()
    e.plot()
    xlim(900,1200)
    
    ax1=figure().add_subplot(111)

    
    ratiolist = list()
#    native= RamanSpectrum('/home/chris/Dropbox/DataWeiss/150612/150612_01_CdSe.txt') ###### Native ligand only
#    native[:]/=2
#    native=removespikes(native)
#    native.autobaseline((600,690,826,861,900,1196,1385,1515,1657),specialoption='points',order=7)
#    native.smooth()
#    
    a = RamanSpectrum('/home/chris/Documents/DataWeiss/150701/files1.txt') 
    b= RamanSpectrum('/home/chris/Documents/DataWeiss/150701/files2.txt')
    c_unwashed= RamanSpectrum('/home/chris/Documents/DataWeiss/150701/files3.txt')
    d_unwashed= RamanSpectrum('/home/chris/Documents/DataWeiss/150701/files4.txt')
    e_unwashed= RamanSpectrum('/home/chris/Documents/DataWeiss/150701/files5.txt')
    

    
    
    correct = zeros(e_unwashed.values.shape)
    for z in [a,b,c_unwashed,d_unwashed,e_unwashed]:
        y = deepcopy(z)
        y.smooth()
        y.smooth()
        y.smooth()
        correct+= y/z
    correct/=5 

    
    

    for z in [c_unwashed,e_unwashed]:

        z[:]*=correct
        z=removespikes(z)
        z.autobaseline((109,500),order=3, join='start')
        z.autobaseline((500,725),order=2, join='start')
        z.autobaseline((725,795),order=1, join='start')
        z.autobaseline((795,1363),order=2, join='start')
        z.autobaseline((1363,1430),order = 1, join = 'start')
        z.autobaseline((1430,1930),order = 4, join='start')
        z.autobaseline((200,555,613,764,1141,1321,1565,1700,1920),specialoption='points',order=7)
        z.smooth()

    lw = 2
    c_unwashed[:]*=3

    guess = [300,1500,1078,1085,15,15,0,0]

    r = fitspectrum(d,(1070,1110),'TwoGaussian',guess ) #r = fitspectrum(z,(1070,1110),'TwoGaussian',guess )
    ratio = r.areas[0]/r.areas[1]
    ratiolist.append(ratio)
    d.plot(linewidth = lw)
    print r.params[0]
    for p in r.peaks:
        ax1.plot(r.x,p,color = 'k',linewidth = 2)
    plot(r.x,r.y, color = 'k', linewidth = lw)
    
    r = fitspectrum(c_unwashed,(1070,1110),'TwoGaussian', guess) #r = fitspectrum(z,(1070,1110),'TwoGaussian',guess )
    ratio = r.areas[0]/r.areas[1]
    ratiolist.append(ratio)
    c_unwashed.plot(linewidth = lw)
    print r.params[0]
    for p in r.peaks:
        ax1.plot(r.x,p,color = 'k',linewidth = 2)
    plot(r.x,r.y, color = 'k', linewidth = lw)
    
    
    e[:]+=2000
    e_unwashed[:]+=2000
    e.smooth()
    guess = [300,1500,1078,1085,15,15,0,2000]

    r = fitspectrum(e,(1050,1110),'ThreeGaussian',  [100,300,1500,1065,1078,1085,15,15,15,0,2000] ) #r = fitspectrum(z,(1070,1110),'TwoGaussian',guess )
    ratio = r.areas[1]/r.areas[2]
    ratiolist.append(ratio)
    e.plot(linewidth = lw)
    print r.params[0]
    for p in r.peaks:
        ax1.plot(r.x,p,color = 'k',linewidth = 2)
    plot(r.x,r.y, color = 'k', linewidth = lw)
    
    r = fitspectrum(e_unwashed,(1070,1110),'TwoGaussian',guess) #r = fitspectrum(z,(1070,1110),'TwoGaussian',guess )
    ratio = r.areas[0]/r.areas[1]
    ratiolist.append(ratio)
    e_unwashed.plot(linewidth = lw)
    print r.params[0]
    for p in r.peaks:
        ax1.plot(r.x,p,color = 'k',linewidth = 2)
    plot(r.x,r.y, color = 'k', linewidth = lw)
        
    
    legend(['c-washed1', 'c-unwashed','e-washed', 'eunwashed'])
    
    print ratiolist
    return 0
def June22():
    """Nice spectra of CdOPA and dotsOPA"""
    d = RamanSpectrum('/home/chris/Dropbox/DataWeiss/150622/150622_06.txt')   ###  pH 1
    a = RamanSpectrum('/home/chris/Dropbox/DataWeiss/150622/150622_07.txt')   ### pH 5
    b = RamanSpectrum('/home/chris/Dropbox/DataWeiss/150622/150622_08.txt')  ### pH 12
    c= RamanSpectrum('/home/chris/Dropbox/DataWeiss/150612/150612_01_CdSe.txt')  ## dots
    d.autobaseline((283,1989),order = 3)
    d.autobaseline((284,408,577,701,826,1147,1380,1588,1849,1976),join='start',order = 9,specialoption='points')

    
    a.autobaseline((283,1989),order = 3)
    a.autobaseline((284,577,701,826,1147,1380,1588,1849,1976),join='start',order = 9,specialoption='points')
    
   
    b.autobaseline((283,1989),order = 3)
    b.autobaseline((284,577,701,826,1147,1380,1588,1849,1976),join='start',order = 9,specialoption='points')
    
   
    c= RamanSpectrum('/home/chris/Dropbox/DataWeiss/150612/150612_01_CdSe.txt')  ## dots
    c.autobaseline((911,1196,1385,1515,1800),specialoption='points',order=7,join='start')
    c.autobaseline((280,600,690,826,861,911),specialoption='points', order = 5,join='end')
    
    c.autobaseline((281,630), order = 4, join = 'end')    
    c.autobaseline((1492,1800), order = 5, join = 'start')
    c[:]*=3
    
    c[:]+=5000
    b[:]+=4000
    a[:]+=1300
    c.plot()
    b.plot()
    a.plot()
    d.plot()
    ylim(0,10000)
    xlim(400,1800)
    
    legend(['dots','CdOPA pH12', 'pH 5', 'pH1'])

    tosave = transpose([d.index,d.values,a.values,b.values])
    savetxt('/home/chris/Desktop/emily/CdOPARaman.csv', tosave, header = 'pH1, pH5, pH12',delimiter = ',')
    c.to_csv('/home/chris/Desktop/emily/DotsOPARaman.csv')
    ylabel('Intensity (a.u.)')
    xlabel('Raman Shift (cm$^{-1}$)')
   # savefig('/home/chris/Dropbox/GroupmeetingJuly9_2015/dotsandrefs.png', dpi=256)
    return 0
def MBTSeries():
    """methylbenzenethiol exchanged CdSe quantum dots on June12"""
    clf()
    ax1 = gca()
    
    chdefarea=array([])
    thiolarea=array([])
    
    
    native= RamanSpectrum('/home/chris/Dropbox/DataWeiss/150612/150612_01_CdSe.txt') ###### Native ligand only
    native[:]/=2
    #native=removespikes(native)
    native.autobaseline((911,1196,1385,1515,1800),join='start',specialoption='points',order=7)
    native.autobaseline((600,690,826,861,911),specialoption='points', order = 5,join='end')
   
    
    eightyfour= RamanSpectrum('/home/chris/Dropbox/DataWeiss/150623/150623_7.txt') ###### 84 eq
    eightyfour[:]/=2
    #eightyfour=removespikes(eightyfour)
    eightyfour.autobaseline((764,838),order = 0,join='start')
    eightyfour.autobaseline((838,2000),order = 1,join='start')
    eightyfour.autobaseline((600,690,826,861,900,1196,1385,1515,1657),specialoption='points',order=7)
   # eightyfour.smooth()
    

    
    
    sixhundredforty= RamanSpectrum('/home/chris/Dropbox/DataWeiss/150617/150617_01.txt')  ###### 640 eq MBT
    #sixhundredforty=removespikes(sixhundredforty)
    sixhundredforty.autobaseline((803,861),order=1, join='start')
    sixhundredforty.autobaseline((861,1254),order = 2, join='start')
    sixhundredforty.autobaseline((1254,1515),order = 4, join = 'start')
    sixhundredforty.autobaseline((1515,2000),order = 3, join = 'start')
    sixhundredforty.autobaseline((555,613,764,1141,1321,1565,1652),specialoption='points',order=6)
    #sixhundredforty.smooth()
    
    thirtytwo=RamanSpectrum('/home/chris/Dropbox/DataWeiss/150623/150623_10.txt')  ###### 32 equivalents
    #thirtytwo=removespikes(thirtytwo)
    thirtytwo.autobaseline((300,862),order = 1,join='start')
    thirtytwo.autobaseline((786,862),order = 0,join='start')
    thirtytwo.autobaseline((862,1425),order = 2,join='start')
    thirtytwo.autobaseline((1425,1439),order = 1,join='start')
    thirtytwo.autobaseline((1439,2000),order = 2,join='start')
    x = RamanSpectrum('/home/chris/Dropbox/DataWeiss/150623/150623_12.txt')
    #x= removespikes(x)
    x.autobaseline((740,1441),order = 1)
    thirtytwo=add_RamanSpectra(thirtytwo,x)
    thirtytwo.autobaseline((740,764,1052,1141,1321,1425,1441),specialoption='points',order=2)
   # thirtytwo.smooth()
    
    
    oneseventynine=RamanSpectrum('/home/chris/Dropbox/DataWeiss/150623/150623_16.txt')  ###### 179 equivalents
   # oneseventynine=removespikes(oneseventynine)
    oneseventynine.autobaseline((300,793),order = 1,join='start')
    oneseventynine.autobaseline((793,862),order = 1,join='start')
    oneseventynine.autobaseline((862,1460),order = 1,join='start')
    oneseventynine.autobaseline((1460,1486),order = 1,join='start')
    oneseventynine.autobaseline((1486,2000),order = 1,join='start')
    oneseventynine.autobaseline((740,764,1052,1141,1321,1425,1441,1700),specialoption='points',order=2)
    #oneseventynine.smooth()
    
    mbt = CdMethylTPRef.copy()
    mbt[:]/=10
    
    lw = 2
    thirtytwo[:]+=200
    eightyfour[:]+=700
    oneseventynine[:]+=1000
    sixhundredforty[:]+=1550
    mbt[:]+=1950
    
    
    chtwistarea=array([native.calc_area((1285,1332)),thirtytwo.calc_area((1285,1332)),eightyfour.calc_area((1285,1332)),oneseventynine.calc_area((1285,1332)),sixhundredforty.calc_area((1285,1332)),mbt.calc_area((1285,1332))])
    chdefarea=array([native.calc_area((1413,1475)),thirtytwo.calc_area((1413,1475)),eightyfour.calc_area((1413,1475)),oneseventynine.calc_area((1413,1475)),sixhundredforty.calc_area((1413,1475)),mbt.calc_area((1413,1475))])
    thiolarea1=array([native.calc_area((1587,1611)),thirtytwo.calc_area((1587,1611)),eightyfour.calc_area((1587,1611)),oneseventynine.calc_area((1587,1611)),sixhundredforty.calc_area((1587,1611)),mbt.calc_area((1587,1611))])
    
    fits1 = list()
    fits2 = list()
    
    a = [thirtytwo, eightyfour, oneseventynine, sixhundredforty, mbt]
    a.reverse()
    for i in a:
        i.plot(linewidth=lw,axes=ax1)
    native.plot(linewidth = lw,axes=ax1)
    
    ax1.set_ylabel('Intensity (a.u.)')
    ax1.set_xlabel('Raman shift (cm$^{-1}$')
    legend(['solid', '640eq','179', '84eq','32eq','0'])
    ax1.set_xlim(500,1800)
    ax1.set_ylim(0,10000)
    

    
    ax2 = figure().add_subplot(111)
    for i in [thirtytwo, eightyfour, oneseventynine, sixhundredforty]:
        guess = [100,500,500,1065,1080,1085,7, 7,7,0,i[1100]]
        r = fitspectrum(i,(1050,1105), 'xGaussian', guess)
        for p in r.peaks:
            ax1.plot(r.x, p,'k', linewidth = 2)
        fits1.append(r.areas[1]/r.areas[2]) 
    ax2.plot([32,84,179,640],fits1,'rs-', label='1')
    
    return None
예제 #26
0
파일: Jan6.py 프로젝트: cmthompson/data
def Jan6():  ### Raman spectra of PPA exchanged dots at different points in exchange
    clf()
    a = RamanSpectrum('/home/chris/Dropbox/DataWeiss/160106/160106_03.txt')
    b = RamanSpectrum('/home/chris/Dropbox/DataWeiss/160106/160106_05.txt')
    c = RamanSpectrum('/home/chris/Dropbox/DataWeiss/160106/160106_06.txt')
    d = RamanSpectrum('/home/chris/Dropbox/DataWeiss/160106/160106_07.txt')
    e = RamanSpectrum('/home/chris/Dropbox/DataWeiss/160106/160106_09.txt')
    f = RamanSpectrum('/home/chris/Dropbox/DataWeiss/160106/160106_10.txt')
    
    a = removespikes(a)
    a.autobaseline((200,1800), order = 5)
    a.autobaseline((1800,2100,2700,3200,3600), specialoption='points',order = 3,join='start')
    
    b.autobaseline((200,1800), order = 5)
    b.autobaseline((1800,2100,2700,3200,3600), specialoption='points',order = 3,join='start')
    b[:]+=10000
    c.autobaseline((200,1800), order = 5)
    c.autobaseline((1800,2100,2700,3200,3600), specialoption='points',order = 3,join='start')
    c[:]+=20000
    d.autobaseline((200,1800), order = 5)
    d.autobaseline((1800,2100,2700,3200,3600), specialoption='points',order = 3,join='start')
    d[:]+=30000
    e.autobaseline((200,1800), order = 5)
    e.autobaseline((1800,2100,2700,3200,3600), specialoption='points',order = 3,join='start')
    e[:]+=40000
    f.autobaseline((200,1800), order = 5)
    f.autobaseline((1800,2100,2700,3200,3600), specialoption='points',order = 3,join='start')
    f[:]+=50000
    
    a.plot(color = 'k')
    b.plot(color = 'k')
    c.plot(color = 'k')
    d.plot(color = 'k')
    e.plot(color = 'k')
    f.plot(color = 'k')
    
    OPAdots =  RamanSpectrum('/home/chris/Dropbox/DataWeiss/150612/150612_01_CdSe.txt')  ## dots
    OPAdots= RamanSpectrum('/home/chris/Dropbox/DataWeiss/150612/150612_01_CdSe.txt')  ## dots
    OPAdots.autobaseline((911,1196,1385,1515,1800),specialoption='points',order=7,join='start')
    OPAdots.autobaseline((280,600,690,826,861,911),specialoption='points', order = 5,join='end')
    
    OPAdots.autobaseline((281,630), order = 4, join = 'end')    
    OPAdots.autobaseline((1492,1800), order = 5, join = 'start')
    OPAdots[:]*=3
    OPAdots[:]+=35000
   # OPAdots.plot()
    DMF = RamanSpectrum('/home/chris/Dropbox/DataWeiss/151215/151215_04.txt')
    DMF.autobaseline((300,1800), order =3)
    DMF[:]+=21000
    #DMF.plot()
    #(CdOPARef*3+35000).plot(color = 'b')
    return 0