def main(self): ############ generate model from data ################## data = earthquakedata.dataremodel() path = 'data.dat' ######## map setting ####### data.longitudemax = 145 data.longitudemin = 140 data.latitudemax = 35 data.latitudemin = 30 data.Interval = 0.5 data.datareader(path) ######## setting end ###### data.selectyear = 2010 data.selectmonths = 1 data.selectmonthe = 12 data.setnum() data.findhappentimes() #data.setmodel() best = -100000 GAf = GA.GA() for i in range(0, 200 * 200): rf = randommodel.generatemodel(self.latitudenum,self.longitudebinnum) intPopulation = np.zeros((data.latitudenum , data.longitudebinnum ),float) intPopulation = randommodel.intergermodel(rf,self.latitudenum,self.longitudebinnum) score = GAf.Evalate(intPopulation,data) if score > best : best = score print "R best = ", best return best
def main(self): ############ generate model from data ################## data = earthquakedata.dataremodel() path = 'data.dat' ######## map setting ####### data.longitudemax = 145 data.longitudemin = 140 data.latitudemax = 35 data.latitudemin = 30 data.Interval = 0.5 data.datareader(path) ######## setting end ###### data.selectyear = 2010 data.selectmonths = 1 data.selectmonthe = 12 data.setnum() data.findhappentimes() #data.setmodel() best = -100000 GAf = GA.GA() for i in range(0, 200 * 200): rf = randommodel.generatemodel(self.latitudenum, self.longitudebinnum) intPopulation = np.zeros((data.latitudenum, data.longitudebinnum), float) intPopulation = randommodel.intergermodel(rf, self.latitudenum, self.longitudebinnum) score = GAf.Evalate(intPopulation, data) if score > best: best = score print "R best = ", best return best
def main(self): ############ generate model from data ################## data = earthquakedata.dataremodel() path = 'data.dat' ######## map setting ####### data.longitudemax = 145 data.longitudemin = 140 data.latitudemax = 35 data.latitudemin = 30 data.Interval = 0.5 data.datareader(path) ######## setting end ###### data.selectyear = 2010 data.selectmonths = 1 data.selectmonthe = 12 data.setnum() data.findhappentimes() #data.setmodel() #here's our data to plot, all normal Python lists ############# from data model end ######################## ####################### GA start ######################## #n = 1 ###set n times #best = Evalate(integerrandomforecat) ############# first Population ############################ newPopulation = np.zeros((self.Population_size, data.latitudenum , data.longitudebinnum ),float) for i in range(0, self.Population_size): newPopulation[i] = randommodel.generatemodel(data.latitudenum , data.longitudebinnum ); for i in range(0, self.Population_size): self.Population.append(newPopulation[i]) ######### loop ######################## best = -100000 for g in range(0,self.Generation): score = np.zeros(len(self.Population),float) for i in range(0, len(self.Population) ): intPopulation = randommodel.intergermodel(self.Population[i], data.latitudenum , data.longitudebinnum ); score[i] = self.Evalate(intPopulation,data) for i in range(0,len(score)): if score[i] > best : best = score[i] self.P_sort(score) while len(self.Population) > self.Population_size: self.Population.pop() score = np.zeros(len(self.Population),float) for i in range(0, len(self.Population) ): intPopulation = randommodel.intergermodel(self.Population[i], data.latitudenum , data.longitudebinnum ) score[i] = self.Evalate(intPopulation,data) self.P_sort(score) self.newpoolclear() self.tournament_selection() self.Corssover() self.Mutation() print "GAwithoutUNDX best = " , best return best
def main(self): ############ generate model from data ################## data = earthquakedata.dataremodel() path = 'data.dat' ######## map setting ####### data.longitudemax = 145 data.longitudemin = 140 data.latitudemax = 35 data.latitudemin = 30 data.Interval = 0.5 data.datareader(path) ######## setting end ###### data.selectyear = 2010 data.selectmonths = 1 data.selectmonthe = 12 data.setnum() data.findhappentimes() #data.setmodel() #here's our data to plot, all normal Python lists ############# from data model end ######################## ####################### GA start ######################## #n = 1 ###set n times #best = Evalate(integerrandomforecat) ############# first Population ############################ newPopulation = np.zeros((self.Population_size, data.latitudenum , data.longitudebinnum ),float) for i in range(0, self.Population_size): newPopulation[i] = randommodel.generatemodel(data.latitudenum , data.longitudebinnum ); for i in range(0, self.Population_size): self.Population.append(newPopulation[i]) ######### loop ######################## best = -100000 for g in range(0,self.Generation): score = np.zeros(len(self.Population),float) for i in range(0, len(self.Population) ): intPopulation = randommodel.intergermodel(self.Population[i], data.latitudenum , data.longitudebinnum ); score[i] = self.Evalate(intPopulation,data) for i in range(0,len(score)): if score[i] > best : best = score[i] self.P_sort(score) while len(self.Population) > self.Population_size: self.Population.pop() score = np.zeros(len(self.Population),float) for i in range(0, len(self.Population) ): intPopulation = randommodel.intergermodel(self.Population[i], data.latitudenum , data.longitudebinnum ) score[i] = self.Evalate(intPopulation,data) self.P_sort(score) self.newpoolclear() self.tournament_selection() self.Corssover() self.Mutation() print "GA best = " , best return best