예제 #1
0
 def create_policy(self, featurizer, priority):
     max_history = None
     if isinstance(featurizer, MaxHistoryTrackerFeaturizer):
         max_history = featurizer.max_history
     p = AugmentedMemoizationPolicy(priority=priority,
                                    max_history=max_history)
     return p
예제 #2
0
def test_agent_train(tmpdir, default_domain):
    training_data_file = 'examples/moodbot/data/stories.md'
    agent = Agent("examples/moodbot/domain.yml",
                  policies=[AugmentedMemoizationPolicy()])

    training_data = agent.load_data(training_data_file)
    agent.train(training_data)
    agent.persist(tmpdir.strpath)

    loaded = Agent.load(tmpdir.strpath)

    # test domain
    assert [a.name() for a in loaded.domain.actions] == \
           [a.name() for a in agent.domain.actions]
    assert loaded.domain.intents == agent.domain.intents
    assert loaded.domain.entities == agent.domain.entities
    assert loaded.domain.templates == agent.domain.templates
    assert [s.name for s in loaded.domain.slots] == \
           [s.name for s in agent.domain.slots]

    # test policies
    assert type(loaded.policy_ensemble) is type(
        agent.policy_ensemble)  # nopep8
    assert [type(p) for p in loaded.policy_ensemble.policies] == \
           [type(p) for p in agent.policy_ensemble.policies]
예제 #3
0
def test_agent_wrong_use_of_load(tmpdir, default_domain):
    training_data_file = 'examples/moodbot/data/stories.md'
    agent = Agent("examples/moodbot/domain.yml",
                  policies=[AugmentedMemoizationPolicy()])

    with pytest.raises(ValueError):
        # try to load a model file from a data path, which is nonsense and
        # should fail properly
        agent.load(training_data_file)
예제 #4
0
def default_processor(default_domain, default_nlg):
    agent = Agent(default_domain,
                  SimplePolicyEnsemble([AugmentedMemoizationPolicy()]),
                  interpreter=RegexInterpreter())

    training_data = agent.load_data(DEFAULT_STORIES_FILE)
    agent.train(training_data)
    tracker_store = InMemoryTrackerStore(default_domain)
    return MessageProcessor(agent.interpreter, agent.policy_ensemble,
                            default_domain, tracker_store, default_nlg)
예제 #5
0
async def prepared_agent(tmpdir_factory) -> Agent:
    model_path = tmpdir_factory.mktemp("model").strpath

    agent = Agent("data/test_domains/default.yml",
                  policies=[AugmentedMemoizationPolicy(max_history=3)])

    training_data = await agent.load_data(DEFAULT_STORIES_FILE)
    agent.train(training_data)
    agent.persist(model_path)
    return agent
예제 #6
0
파일: test_server.py 프로젝트: mann2107/NLP
def core_server(tmpdir_factory):
    model_path = tmpdir_factory.mktemp("model").strpath

    agent = Agent("data/test_domains/default.yml",
                  policies=[AugmentedMemoizationPolicy(max_history=3)])

    training_data = agent.load_data(DEFAULT_STORIES_FILE)
    agent.train(training_data)
    agent.persist(model_path)

    return server.create_app(model_path, interpreter=RegexInterpreter())
예제 #7
0
def core_server(tmpdir_factory):
    model_path = tmpdir_factory.mktemp("model").strpath

    agent = Agent("data/test_domains/default.yml",
                  policies=[AugmentedMemoizationPolicy(max_history=3)])

    training_data = agent.load_data(DEFAULT_STORIES_FILE)
    agent.train(training_data)
    agent.persist(model_path)

    loaded_agent = Agent.load(model_path, interpreter=RegexInterpreter())

    app = server.create_app(loaded_agent)
    channel.register([RestInput()], app, agent.handle_message, "/webhooks/")
    return app
def train_dialogue(domain_file='bank_domain.yml',
                   model_path='./models/dialogue',
                   training_data_file='./data/stories.md'):

    agent = Agent(domain_file,
                  policies=[
                      MemoizationPolicy(),
                      KerasPolicy(max_history=3, epochs=150, batch_size=50),
                      AugmentedMemoizationPolicy(max_history=3)
                  ])
    data = agent.load_data(training_data_file)

    agent.train(data)

    agent.persist(model_path)
    return agent