def __init__(self, entity_extractor=None, intent_classifier=None, language_name='en', **kwargs): self.nlp = spacy.load(language_name, parser=False, entity=False, matcher=False) self.featurizer = SpacyFeaturizer(self.nlp) with open(intent_classifier, 'rb') as f: self.classifier = cloudpickle.load(f) self.extractor = SpacyEntityExtractor(self.nlp, entity_extractor)
class SpacySklearnTrainer(Trainer): SUPPORTED_LANGUAGES = {"en", "de"} def __init__(self, config, language_name): self.ensure_language_support(language_name) self.name = "spacy_sklearn" self.language_name = language_name self.training_data = None self.nlp = spacy.load(self.language_name, parser=False, entity=False) self.featurizer = SpacyFeaturizer(self.nlp) self.intent_classifier = SklearnIntentClassifier() self.entity_extractor = SpacyEntityExtractor() def train(self, data, test_split_size=0.1): self.training_data = data self.train_entity_extractor(data.entity_examples) self.train_intent_classifier(data.intent_examples, test_split_size) def train_entity_extractor(self, entity_examples): self.entity_extractor.train(self.nlp, entity_examples) def train_intent_classifier(self, intent_examples, test_split_size=0.1): labels = [e["intent"] for e in intent_examples] sentences = [e["text"] for e in intent_examples] y = self.intent_classifier.transform_labels_str2num(labels) X = self.featurizer.create_bow_vecs(sentences) self.intent_classifier.train(X, y, test_split_size) def persist(self, path, persistor=None, create_unique_subfolder=True): timestamp = datetime.datetime.now().strftime('%Y%m%d-%H%M%S') if create_unique_subfolder: dir_name = os.path.join(path, "model_" + timestamp) os.mkdir(dir_name) else: dir_name = path data_file = os.path.join(dir_name, "training_data.json") classifier_file = os.path.join(dir_name, "intent_classifier.pkl") ner_dir = os.path.join(dir_name, 'ner') if not os.path.exists(ner_dir): os.mkdir(ner_dir) entity_extractor_config_file = os.path.join(ner_dir, "config.json") entity_extractor_file = os.path.join(ner_dir, "model") write_training_metadata(dir_name, timestamp, data_file, self.name, self.language_name, classifier_file, ner_dir) with open(data_file, 'w') as f: f.write(self.training_data.as_json(indent=2)) with open(classifier_file, 'wb') as f: cloudpickle.dump(self.intent_classifier, f) with open(entity_extractor_config_file, 'w') as f: json.dump(self.entity_extractor.ner.cfg, f) self.entity_extractor.ner.model.dump(entity_extractor_file) if persistor is not None: persistor.send_tar_to_s3(dir_name)
def __init__(self, config, language_name): self.ensure_language_support(language_name) self.name = "spacy_sklearn" self.language_name = language_name self.training_data = None self.nlp = spacy.load(self.language_name, parser=False, entity=False) self.featurizer = SpacyFeaturizer(self.nlp) self.intent_classifier = SklearnIntentClassifier() self.entity_extractor = SpacyEntityExtractor()
def test_spacy_ner_extractor(spacy_nlp): ext = SpacyEntityExtractor() example = Message("anywhere in the West", { "intent": "restaurant_search", "entities": [], "spacy_doc": spacy_nlp("anywhere in the west")}) ext.process(example, spacy_nlp=spacy_nlp) assert len(example.get("entities", [])) == 1 assert example.get("entities")[0] == { u'start': 16, u'extractor': u'ner_spacy', u'end': 20, u'value': u'West', u'entity': u'LOC'}
def load(meta, nlp, featurizer=None): """ :type meta: rasa_nlu.model.Metadata :type nlp: spacy.language.Language :type featurizer: None or rasa_nlu.featurizers.spacy_featurizer.SpacyFeaturizer :rtype: MITIEInterpreter """ if meta.entity_extractor_path: extractor = SpacyEntityExtractor(nlp, meta.entity_extractor_path, meta.metadata.get("should_fine_tune_spacy_ner")) else: extractor = None if meta.intent_classifier_path: with open(meta.intent_classifier_path, 'rb') as f: classifier = cloudpickle.load(f) else: classifier = None if meta.entity_synonyms_path: entity_synonyms = Interpreter.load_synonyms(meta.entity_synonyms_path) else: entity_synonyms = None if featurizer is None: featurizer = SpacyFeaturizer(nlp) return SpacySklearnInterpreter( classifier, extractor, entity_synonyms, featurizer, nlp)
class SpacySklearnInterpreter(Interpreter): def __init__(self, entity_extractor=None, intent_classifier=None, language_name='en', **kwargs): self.nlp = spacy.load(language_name, parser=False, entity=False, matcher=False) self.featurizer = SpacyFeaturizer(self.nlp) with open(intent_classifier, 'rb') as f: self.classifier = cloudpickle.load(f) self.extractor = SpacyEntityExtractor(self.nlp, entity_extractor) def get_intent(self, text): X = self.featurizer.create_bow_vecs([text]) return self.classifier.predict(X)[0] def parse(self, text): intent = self.get_intent(text) entities = self.extractor.extract_entities(self.nlp, text) return {'text': text, 'intent': intent, 'entities': entities}
class SpacySklearnInterpreter(Interpreter): def __init__(self, entity_extractor=None, intent_classifier=None, language_name='en', **kwargs): self.nlp = spacy.load(language_name, parser=False, entity=False, matcher=False) self.featurizer = SpacyFeaturizer(self.nlp) with open(intent_classifier, 'rb') as f: self.classifier = cloudpickle.load(f) self.extractor = SpacyEntityExtractor(self.nlp, entity_extractor) def get_intent(self, text): """Returns the most likely intent and its probability for the input text. :param text: text to classify :return: tuple of most likely intent name and its probability""" X = self.featurizer.create_bow_vecs([text]) intent_ids, probabilities = self.classifier.predict(X) intents = self.classifier.transform_labels_num2str(intent_ids) return intents[0], probabilities[0] def parse(self, text): """Parse the input text, classify it and return an object containing its intent and entities.""" intent, probability = self.get_intent(text) entities = self.extractor.extract_entities(self.nlp, text) return {'text': text, 'intent': intent, 'entities': entities, 'confidence': probability}
class SpacySklearnInterpreter(Interpreter): def __init__(self, entity_extractor=None, entity_synonyms=None, intent_classifier=None, language_name='en', **kwargs): self.extractor = None self.classifier = None self.ent_synonyms = None self.nlp = spacy.load(language_name, parser=False, entity=False, matcher=False) self.featurizer = SpacyFeaturizer(self.nlp) ensure_proper_language_model(self.nlp) if intent_classifier: with open(intent_classifier, 'rb') as f: self.classifier = cloudpickle.load(f) if entity_extractor: self.extractor = SpacyEntityExtractor(self.nlp, entity_extractor) self.ent_synonyms = Interpreter.load_synonyms(entity_synonyms) def get_intent(self, doc): """Returns the most likely intent and its probability for the input text. :param text: text to classify :return: tuple of most likely intent name and its probability""" if self.classifier: X = self.featurizer.features_for_doc(doc).reshape(1, -1) intent_ids, probabilities = self.classifier.predict(X) intents = self.classifier.transform_labels_num2str(intent_ids) intent, score = intents[0], probabilities[0] else: intent, score = "None", 0.0 return intent, score def get_entities(self, doc): if self.extractor: return self.extractor.extract_entities(doc) return [] def parse(self, text): """Parse the input text, classify it and return an object containing its intent and entities.""" doc = self.nlp(text) intent, probability = self.get_intent(doc) entities = self.get_entities(doc) if self.ent_synonyms: Interpreter.replace_synonyms(entities, self.ent_synonyms) return { 'text': text, 'intent': intent, 'entities': entities, 'confidence': probability }
def test_spacy_ner_extractor(spacy_nlp): ext = SpacyEntityExtractor() example = Message("anywhere in the West", { "intent": "restaurant_search", "entities": [], "spacy_doc": spacy_nlp("anywhere in the west")}) ext.process(example, spacy_nlp=spacy_nlp) assert len(example.get("entities", [])) == 1 assert example.get("entities")[0] == { 'start': 16, 'extractor': 'ner_spacy', 'end': 20, 'value': 'West', 'entity': 'LOC', 'confidence': None}
class SpacySklearnTrainer(Trainer): SUPPORTED_LANGUAGES = {"en", "de"} def __init__(self, language_name, max_num_threads=1): super(self.__class__, self).__init__("spacy_sklearn", language_name, max_num_threads) self.nlp = spacy.load(self.language_name, parser=False, entity=False) self.featurizer = SpacyFeaturizer(self.nlp) ensure_proper_language_model(self.nlp) def train_entity_extractor(self, entity_examples): self.entity_extractor = SpacyEntityExtractor() self.entity_extractor = self.entity_extractor.train( self.nlp, entity_examples) def train_intent_classifier(self, intent_examples, test_split_size=0.1): self.intent_classifier = sklearn_trainer_utils.train_intent_classifier( intent_examples, self.featurizer, self.max_num_threads, test_split_size) def persist(self, path, persistor=None, create_unique_subfolder=True): entity_extractor_file, entity_extractor_config_file = None, None timestamp = datetime.datetime.now().strftime('%Y%m%d-%H%M%S') if create_unique_subfolder: dir_name = os.path.join(path, "model_" + timestamp) os.mkdir(dir_name) else: dir_name = path data_file = os.path.join(dir_name, "training_data.json") classifier_file, ner_dir = None, None if self.intent_classifier: classifier_file = os.path.join(dir_name, "intent_classifier.pkl") if self.entity_extractor: ner_dir = os.path.join(dir_name, 'ner') if not os.path.exists(ner_dir): os.mkdir(ner_dir) entity_extractor_config_file = os.path.join(ner_dir, "config.json") entity_extractor_file = os.path.join(ner_dir, "model") write_training_metadata(dir_name, timestamp, data_file, self.name, self.language_name, classifier_file, ner_dir) with open(data_file, 'w') as f: f.write(self.training_data.as_json(indent=2)) if self.intent_classifier: with open(classifier_file, 'wb') as f: cloudpickle.dump(self.intent_classifier, f) if self.entity_extractor: with open(entity_extractor_config_file, 'w') as f: json.dump(self.entity_extractor.ner.cfg, f) self.entity_extractor.ner.model.dump(entity_extractor_file) if persistor is not None: persistor.send_tar_to_s3(dir_name)
def __init__(self, entity_extractor=None, entity_synonyms=None, intent_classifier=None, language_name='en', **kwargs): self.extractor = None self.classifier = None self.ent_synonyms = None self.nlp = spacy.load(language_name, parser=False, entity=False, matcher=False) self.featurizer = SpacyFeaturizer(self.nlp) ensure_proper_language_model(self.nlp) if intent_classifier: with open(intent_classifier, 'rb') as f: self.classifier = cloudpickle.load(f) if entity_extractor: self.extractor = SpacyEntityExtractor(self.nlp, entity_extractor) self.ent_synonyms = Interpreter.load_synonyms(entity_synonyms)
def load(meta, nlp): """ :type meta: ModelMetadata :rtype: MITIEInterpreter """ if meta.entity_extractor_path: extractor = SpacyEntityExtractor(nlp, meta.entity_extractor_path) else: extractor = None if meta.intent_classifier_path: with open(meta.intent_classifier_path, 'rb') as f: classifier = cloudpickle.load(f) else: classifier = None if meta.entity_synonyms_path: entity_synonyms = Interpreter.load_synonyms( meta.entity_synonyms_path) else: entity_synonyms = None return SpacySklearnInterpreter(classifier, extractor, entity_synonyms, nlp)
def train_entity_extractor(self, entity_examples): self.entity_extractor = SpacyEntityExtractor() self.entity_extractor.train(self.nlp, entity_examples)
def train_entity_extractor(self, entity_examples): self.entity_extractor = SpacyEntityExtractor() self.entity_extractor.train(self.nlp, entity_examples, self.should_fine_tune_spacy_ner)