예제 #1
0
def test_environment_variable_in_list():
    os.environ['variable'] = 'test'
    content = "model: \n  - value\n  - ${variable}"

    result = utils.read_yaml(content)

    assert result['model'][1] == 'test'
예제 #2
0
def test_environment_variable_dict_with_prefix_and_with_postfix():
    os.environ['variable'] = 'test'
    content = "model: \n  test: dir/${variable}/dir"

    result = utils.read_yaml(content)

    assert result['model']['test'] == 'dir/test/dir'
예제 #3
0
def test_environment_variable_dict_with_prefix_and_with_postfix():
    os.environ['variable'] = 'test'
    content = "model: \n  test: dir/${variable}/dir"

    result = utils.read_yaml(content)

    assert result['model']['test'] == 'dir/test/dir'
예제 #4
0
def test_environment_variable_in_list():
    os.environ['variable'] = 'test'
    content = "model: \n  - value\n  - ${variable}"

    result = utils.read_yaml(content)

    assert result['model'][1] == 'test'
예제 #5
0
def test_read_emojis_from_json():
    import json
    from rasa_nlu.utils import read_yaml
    d = {"text": "hey 😁💯 👩🏿‍💻👨🏿‍💻🧜‍♂️"}
    json_string = json.dumps(d, indent=2)

    s = read_yaml(json_string)

    assert s.get('text') == "hey 😁💯 👩🏿‍💻👨🏿‍💻🧜‍♂️"
예제 #6
0
def test_read_emojis_from_json():
    import json
    from rasa_nlu.utils import read_yaml
    d = {"text": "hey 😁💯 👩🏿‍💻👨🏿‍💻🧜‍♂️(?u)\\b\\w+\\b} f\u00fcr"}
    json_string = json.dumps(d, indent=2)

    s = read_yaml(json_string)

    expected = "hey 😁💯 👩🏿‍💻👨🏿‍💻🧜‍♂️(?u)\\b\\w+\\b} für"
    assert s.get('text') == expected
예제 #7
0
def test_emojis_in_yaml():
    test_data = """
    data:
        - one 😁💯 👩🏿‍💻👨🏿‍💻
        - two £
    """
    actual = utils.read_yaml(test_data)

    assert actual["data"][0] == "one 😁💯 👩🏿‍💻👨🏿‍💻"
    assert actual["data"][1] == "two £"
예제 #8
0
def test_emojis_in_yaml():
    test_data = """
    data:
        - one 😁💯 👩🏿‍💻👨🏿‍💻
        - two £ (?u)\\b\\w+\\b f\u00fcr
    """
    actual = utils.read_yaml(test_data)

    assert actual["data"][0] == "one 😁💯 👩🏿‍💻👨🏿‍💻"
    assert actual["data"][1] == "two £ (?u)\\b\\w+\\b für"
예제 #9
0
def test_read_emojis_from_json():
    import json
    from rasa_nlu.utils import read_yaml
    d = {"text": "hey 😁💯 👩🏿‍💻👨🏿‍💻🧜‍♂️(?u)\\b\\w+\\b} f\u00fcr"}
    json_string = json.dumps(d, indent=2)

    s = read_yaml(json_string)

    expected = "hey 😁💯 👩🏿‍💻👨🏿‍💻🧜‍♂️(?u)\\b\\w+\\b} für"
    assert s.get('text') == expected
예제 #10
0
def test_emojis_in_yaml():
    test_data = """
    data:
        - one 😁💯 👩🏿‍💻👨🏿‍💻
        - two £ (?u)\\b\\w+\\b f\u00fcr
    """
    actual = utils.read_yaml(test_data)

    assert actual["data"][0] == "one 😁💯 👩🏿‍💻👨🏿‍💻"
    assert actual["data"][1] == "two £ (?u)\\b\\w+\\b für"
예제 #11
0
def test_bool_str():
    test_data = """
    one: "yes"
    two: "true"
    three: "True"
    """

    actual = utils.read_yaml(test_data)

    assert actual["one"] == "yes"
    assert actual["two"] == "true"
    assert actual["three"] == "True"
예제 #12
0
def test_bool_str():
    test_data = """
    one: "yes"
    two: "true"
    three: "True"
    """

    actual = utils.read_yaml(test_data)

    assert actual["one"] == "yes"
    assert actual["two"] == "true"
    assert actual["three"] == "True"
예제 #13
0
def test_emojis_in_tmp_file():
    test_data = """
        data:
            - one 😁💯 👩🏿‍💻👨🏿‍💻
            - two £ (?u)\\b\\w+\\b f\u00fcr
        """
    test_file = utils.create_temporary_file(test_data)
    with io.open(test_file, mode='r', encoding="utf-8") as f:
        content = f.read()
    actual = utils.read_yaml(content)

    assert actual["data"][0] == "one 😁💯 👩🏿‍💻👨🏿‍💻"
    assert actual["data"][1] == "two £ (?u)\\b\\w+\\b für"
예제 #14
0
def test_emojis_in_tmp_file():
    test_data = """
        data:
            - one 😁
            - two £
        """
    test_file = utils.create_temporary_file(test_data)
    with io.open(test_file, mode='r', encoding="utf-8") as f:
        content = f.read()
    actual = utils.read_yaml(content)

    assert actual["data"][0] == "one 😁"
    assert actual["data"][1] == "two £"
예제 #15
0
def test_emojis_in_tmp_file():
    test_data = """
        data:
            - one 😁💯 👩🏿‍💻👨🏿‍💻
            - two £ (?u)\\b\\w+\\b f\u00fcr
        """
    test_file = utils.create_temporary_file(test_data)
    with io.open(test_file, mode='r', encoding="utf-8") as f:
        content = f.read()
    actual = utils.read_yaml(content)

    assert actual["data"][0] == "one 😁💯 👩🏿‍💻👨🏿‍💻"
    assert actual["data"][1] == "two £ (?u)\\b\\w+\\b für"
예제 #16
0
def run_trial(space):
    """The objective function is pickled and transferred to the workers.
       Hence, this function has to contain all the imports we need.
    """

    data_dir = os.environ.get("DATA_DIRECTORY", "./data")
    model_dir = os.environ.get("MODEL_DIRECTORY", "./models")
    target_metric = os.environ.get("TARGET_METRIC", "f1_score")

    if target_metric not in AVAILABLE_METRICS:
        logger.error("The metric '{}' is not in the available metrics. "
                     "Please use one of the available metrics: {}."
                     "".format(target_metric, AVAILABLE_METRICS))

        return {"loss": 1, "status": STATUS_FAIL}

    logger.debug("Search space: {}".format(space))

    # The epoch has to be an int since `tqdm` otherwise will cause an exception.
    if "epochs" in space:
        space["epochs"] = int(space["epochs"])

    with open(os.path.join(data_dir, "template_config.yml")) as f:
        config_yml = f.read().format(**space)
        config = read_yaml(config_yml)
        config = RasaNLUModelConfig(config)

    trainer = Trainer(config)
    training_data = load_data(os.path.join(data_dir, "train.md"))
    test_data_path = os.path.join(data_dir, "validation.md")

    # wrap in train and eval in try/except in case
    # nlu_hyperopt proposes invalid combination of params

    try:
        model = trainer.train(training_data)
        model_path = trainer.persist(model_dir)

        if target_metric is None or target_metric == "threshold_loss":
            loss = _get_threshold_loss(model, test_data_path)
        else:
            loss = _get_nlu_evaluation_loss(model_path, target_metric,
                                            test_data_path)
        return {"loss": loss, "status": STATUS_OK}
    except Exception as e:
        logger.error(e)
        return {"loss": 1, "status": STATUS_FAIL}
예제 #17
0
    def train(self, request):
        # if not set will use the default project name, e.g. "default"
        project = parameter_or_default(request, "project", default=None)
        # if set will not generate a model name but use the passed one
        model_name = parameter_or_default(request, "model", default=None)

        request_content = request.content.read().decode('utf-8', 'strict')

        if is_yaml_request(request):
            # assumes the user submitted a model configuration with a data
            # parameter attached to it
            model_config = utils.read_yaml(request_content)
            data = model_config.get("data")
        else:
            # assumes the caller just provided training data without config
            # this will use the default model config the server
            # was started with
            model_config = self.default_model_config
            data = request_content

        data_file = dump_to_data_file(data)

        request.setHeader('Content-Type', 'application/json')

        try:
            request.setResponseCode(200)

            response = yield self.data_router.start_train_process(
                data_file, project, RasaNLUModelConfig(model_config),
                model_name)

            returnValue(
                json_to_string(
                    {'info': 'new model trained: {}'
                     ''.format(response)}))
        except AlreadyTrainingError as e:
            request.setResponseCode(403)
            returnValue(json_to_string({"error": "{}".format(e)}))
        except InvalidProjectError as e:
            request.setResponseCode(404)
            returnValue(json_to_string({"error": "{}".format(e)}))
        except TrainingException as e:
            request.setResponseCode(500)
            returnValue(json_to_string({"error": "{}".format(e)}))
예제 #18
0
파일: server.py 프로젝트: zhiyouWu/rasa_nlu
    def extract_data_and_config(self, request):

        request_content = request.content.read().decode('utf-8', 'strict')
        content_type = self.get_request_content_type(request)

        if 'yml' in content_type:
            # assumes the user submitted a model configuration with a data
            # parameter attached to it

            model_config = utils.read_yaml(request_content)
            data = model_config.get("data")

        elif 'json' in content_type:

            model_config, data = self.extract_json(request_content)

        else:

            raise Exception("Content-Type must be 'application/x-yml' "
                            "or 'application/json'")

        return model_config, data
예제 #19
0
파일: server.py 프로젝트: shiva16/rasa_nlu
    def extract_data_and_config(self, request):

        request_content = request.content.read().decode('utf-8', 'strict')
        content_type = self.get_request_content_type(request)

        if 'yml' in content_type:
            # assumes the user submitted a model configuration with a data
            # parameter attached to it

            model_config = utils.read_yaml(request_content)
            data = model_config.get("data")

        elif 'json' in content_type:

            model_config, data = self.extract_json(request_content)

        else:

            raise Exception("Content-Type must be 'application/x-yml' "
                            "or 'application/json'")

        return model_config, data
예제 #20
0
파일: server.py 프로젝트: nan0tube/rasa_nlu
    def train(self, request):
        project = parameter_or_default(request, "project", default=None)

        request_content = request.content.read().decode('utf-8', 'strict')

        if is_yaml_request(request):
            # assumes the user submitted a model configuration with a data
            # parameter attached to it
            model_config = utils.read_yaml(request_content)
            data = model_config.get("data")
        else:
            # assumes the caller just provided training data without config
            # this will use the default model config the server
            # was started with
            model_config = self.default_model_config
            data = request_content

        data_file = dump_to_data_file(data)

        request.setHeader('Content-Type', 'application/json')

        try:
            request.setResponseCode(200)
            response = yield self.data_router.start_train_process(
                    data_file, project, RasaNLUModelConfig(model_config))
            returnValue(json_to_string({'info': 'new model trained: {}'
                                                ''.format(response)}))
        except AlreadyTrainingError as e:
            request.setResponseCode(403)
            returnValue(json_to_string({"error": "{}".format(e)}))
        except InvalidProjectError as e:
            request.setResponseCode(404)
            returnValue(json_to_string({"error": "{}".format(e)}))
        except TrainingException as e:
            request.setResponseCode(500)
            returnValue(json_to_string({"error": "{}".format(e)}))
예제 #21
0
def test_environment_variable_not_existing():
    content = "model: \n  test: ${variable}"
    with pytest.raises(KeyError):
        utils.read_yaml(content)
예제 #22
0
def test_environment_variable_not_existing():
    content = "model: \n  test: ${variable}"
    with pytest.raises(KeyError):
        utils.read_yaml(content)