channel_bandwidth=channel_bandwidth, weight=1.0, phasecentre=phasecentre, polarisation_frame=PolarisationFrame("stokesI"), zerow=True) vis = convert_blockvisibility_to_visibility(block_vis) advice = advise_wide_field(vis, guard_band_image=2.0, delA=0.02) cellsize = advice['cellsize'] vis_slices = advice['vis_slices'] npixel = advice['npixels2'] small_model = create_image_from_visibility(block_vis, npixel=512, frequency=frequency, nchan=nfreqwin, cellsize=cellsize, phasecentre=phasecentre) vis.data['imaging_weight'][...] = vis.data['weight'][...] vis = weight_list_serial_workflow([vis], [small_model])[0] vis = taper_list_serial_workflow([vis], 3 * cellsize)[0] block_vis = convert_visibility_to_blockvisibility(vis) ####################################################################################################### ### Generate the component model from the GLEAM catalog, including application of the primary beam. Read the # phase screen and calculate the gaintable for each component. flux_limit = args.flux_limit beam = create_image_from_visibility(block_vis, npixel=npixel,
log.setLevel(logging.DEBUG) log.addHandler(logging.StreamHandler(sys.stdout)) log.addHandler(logging.StreamHandler(sys.stderr)) if __name__ == '__main__': results_dir = rascil_path('test_results') bvt = create_blockvisibility_from_ms(rascil_path('data/vis/sim-2.ms'), start_chan=35, end_chan=39)[0] bvt.configuration.diameter[...] = 35.0 vt = convert_blockvisibility_to_visibility(bvt) vt = convert_visibility_to_stokes(vt) a2r = numpy.pi / (180.0 * 3600.0) model = create_image_from_visibility(vt, cellsize=20.0 * a2r, npixel=512, polarisation_frame=PolarisationFrame('stokesIQUV')) dirty, sumwt = invert_list_serial_workflow([vt], [model], context='2d')[0] psf, sumwt = invert_list_serial_workflow([vt], [model], context='2d', dopsf=True)[0] export_image_to_fits(dirty, '%s/rascil_imaging_sim_2_dirty.fits' % (results_dir)) export_image_to_fits(psf, '%s/rascil_imaging_sim_2_psf.fits' % (results_dir)) # Deconvolve using msclean comp, residual = deconvolve_cube(dirty, psf, niter=10000, threshold=0.001, fractional_threshold=0.001, algorithm='msclean', window_shape='quarter', gain=0.7, scales=[0, 3, 10, 30]) restored = restore_cube(comp, psf, residual) print(qa_image(restored))
plt.plot(-vt.data['uvw'][:, 0], -vt.data['uvw'][:, 1], '.', color='b') # plt.xlim([-400.0, 400.0]) # plt.ylim([-400.0, 400.0]) plt.show() # To check that we got the prediction right, plot the amplitude of the visibility. uvdist = numpy.sqrt(vt.data['uvw'][:, 0]**2 + vt.data['uvw'][:, 1]**2) plt.clf() plt.plot(uvdist, numpy.abs(vt.data['vis']), '.') plt.xlabel('uvdist') plt.ylabel('Amp Visibility') plt.show() model = create_image_from_visibility( vt, cellsize=cellsize, npixel=1024, polarisation_frame=PolarisationFrame('stokesIV')) dirty, sumwt = invert_2d(vt, model, context='2d') psf, sumwt = invert_2d(vt, model, context='2d', dopsf=True) dirty = show_image(dirty) dirty.show() show_image(psf) # print("Max, min in dirty image = %.6f, %.6f, sumwt = %f" % (dirty.data.max(), dirty.data.min(), sumwt)) # print("Max, min in PSF = %.6f, %.6f, sumwt = %f" % (psf.data.max(), psf.data.min(), sumwt)) # export_image_to_fits(dirty, '%s/imaging_dirty.fits'%(results_dir)) # export_image_to_fits(psf, '%s/imaging_psf.fits'%(results_dir))
def actualSetup(self, nsources=None, nvoronoi=None): # Set up the observation: 10 minutes at transit, with 10s integration. # Skip 5/6 points to avoid outstation redundancy nfreqwin = 1 ntimes = 3 self.rmax = 2500.0 dec = -40.0 * u.deg frequency = [1e8] channel_bandwidth = [0.1e8] times = numpy.linspace(-10.0, 10.0, ntimes) * numpy.pi / (3600.0 * 12.0) phasecentre = SkyCoord(ra=+0.0 * u.deg, dec=dec, frame='icrs', equinox='J2000') low = create_named_configuration('LOWBD2', rmax=self.rmax) centre = numpy.mean(low.xyz, axis=0) distance = numpy.hypot(low.xyz[:, 0] - centre[0], low.xyz[:, 1] - centre[1], low.xyz[:, 2] - centre[2]) lowouter = low.data[distance > 1000.0][::6] lowcore = low.data[distance < 1000.0][::3] low.data = numpy.hstack((lowcore, lowouter)) blockvis = create_blockvisibility(low, times, frequency=frequency, channel_bandwidth=channel_bandwidth, weight=1.0, phasecentre=phasecentre, polarisation_frame=PolarisationFrame("stokesI"), zerow=True) vis = convert_blockvisibility_to_visibility(blockvis) advice = advise_wide_field(vis, guard_band_image=2.0, delA=0.02) cellsize = advice['cellsize'] npixel = 512 small_model = create_image_from_visibility( blockvis, npixel=512, frequency=frequency, nchan=nfreqwin, cellsize=cellsize, phasecentre=phasecentre) vis.data['imaging_weight'][...] = vis.data['weight'][...] vis = weight_list_serial_workflow([vis], [small_model])[0] vis = taper_list_serial_workflow([vis], 3 * cellsize)[0] blockvis = convert_visibility_to_blockvisibility(vis) # ### Generate the model from the GLEAM catalog, including application of the primary beam. beam = create_image_from_visibility(blockvis, npixel=npixel, frequency=frequency, nchan=nfreqwin, cellsize=cellsize, phasecentre=phasecentre) beam = create_low_test_beam(beam, use_local=False) flux_limit = 0.5 original_gleam_components = create_low_test_skycomponents_from_gleam(flux_limit=flux_limit, phasecentre=phasecentre, frequency=frequency, polarisation_frame=PolarisationFrame( 'stokesI'), radius=0.15) all_components = apply_beam_to_skycomponent(original_gleam_components, beam) all_components = filter_skycomponents_by_flux(all_components, flux_min=flux_limit) voronoi_components = filter_skycomponents_by_flux(all_components, flux_min=1.5) def max_flux(elem): return numpy.max(elem.flux) voronoi_components = sorted(voronoi_components, key=max_flux, reverse=True) if nsources is not None: all_components = [all_components[0]] if nvoronoi is not None: voronoi_components = [voronoi_components[0]] self.screen = import_image_from_fits(rascil_data_path('models/test_mpc_screen.fits')) all_gaintables = create_gaintable_from_screen(blockvis, all_components, self.screen) gleam_skymodel_noniso = [SkyModel(components=[all_components[i]], gaintable=all_gaintables[i]) for i, sm in enumerate(all_components)] # ### Now predict the visibility for each skymodel and apply the gaintable for that skymodel, # returning a list of visibilities, one for each skymodel. We then sum these to obtain # the total predicted visibility. All images and skycomponents in the same skymodel # get the same gaintable applied which means that in this case each skycomponent has a separate gaintable. self.all_skymodel_noniso_vis = convert_blockvisibility_to_visibility(blockvis) ngroup = 8 future_vis = rsexecute.scatter(self.all_skymodel_noniso_vis) chunks = [gleam_skymodel_noniso[i:i + ngroup] for i in range(0, len(gleam_skymodel_noniso), ngroup)] for chunk in chunks: result = predict_skymodel_list_rsexecute_workflow(future_vis, chunk, context='2d', docal=True) work_vis = rsexecute.compute(result, sync=True) for w in work_vis: self.all_skymodel_noniso_vis.data['vis'] += w.data['vis'] assert numpy.max(numpy.abs(self.all_skymodel_noniso_vis.data['vis'])) > 0.0 self.all_skymodel_noniso_blockvis = convert_visibility_to_blockvisibility(self.all_skymodel_noniso_vis) # ### Remove weaker of components that are too close (0.02 rad) idx, voronoi_components = remove_neighbouring_components(voronoi_components, 0.02) model = create_image_from_visibility(blockvis, npixel=npixel, frequency=frequency, nchan=nfreqwin, cellsize=cellsize, phasecentre=phasecentre) # Use the gaintable for the brightest component as the starting gaintable all_gaintables[0].gain[...] = numpy.conjugate(all_gaintables[0].gain[...]) all_gaintables[0].gain[...] = 1.0 + 0.0j self.theta_list = initialize_skymodel_voronoi(model, voronoi_components, all_gaintables[0])
advice = advise_wide_field(vt, guard_band_image=3.0, delA=0.1, oversampling_synthesised_beam=4.0) cellsize = advice['cellsize'] # Read the venerable test image, constructing a RASCIL Image m31image = create_test_image(frequency=frequency, cellsize=cellsize, phasecentre=vt.phasecentre) # Predict the visibility for the Image vt = predict_2d(vt, m31image, context='2d') # Make the dirty image and point spread function model = create_image_from_visibility(vt, cellsize=cellsize, npixel=512) dirty, sumwt = invert_2d(vt, model, context='2d') psf, sumwt = invert_2d(vt, model, context='2d', dopsf=True) print("Max, min in dirty image = %.6f, %.6f, sumwt = %f" % (dirty.data.max(), dirty.data.min(), sumwt)) print("Max, min in PSF = %.6f, %.6f, sumwt = %f" % (psf.data.max(), psf.data.min(), sumwt)) export_image_to_fits(dirty, '%s/imaging_dirty.fits' % (results_dir)) export_image_to_fits(psf, '%s/imaging_psf.fits' % (results_dir)) # Deconvolve using clean comp, residual = deconvolve_cube(dirty, psf, niter=10000,