예제 #1
0
        channel_bandwidth=channel_bandwidth,
        weight=1.0,
        phasecentre=phasecentre,
        polarisation_frame=PolarisationFrame("stokesI"),
        zerow=True)

    vis = convert_blockvisibility_to_visibility(block_vis)
    advice = advise_wide_field(vis, guard_band_image=2.0, delA=0.02)

    cellsize = advice['cellsize']
    vis_slices = advice['vis_slices']
    npixel = advice['npixels2']

    small_model = create_image_from_visibility(block_vis,
                                               npixel=512,
                                               frequency=frequency,
                                               nchan=nfreqwin,
                                               cellsize=cellsize,
                                               phasecentre=phasecentre)

    vis.data['imaging_weight'][...] = vis.data['weight'][...]
    vis = weight_list_serial_workflow([vis], [small_model])[0]
    vis = taper_list_serial_workflow([vis], 3 * cellsize)[0]

    block_vis = convert_visibility_to_blockvisibility(vis)

    #######################################################################################################
    ### Generate the component model from the GLEAM catalog, including application of the primary beam. Read the
    # phase screen and calculate the gaintable for each component.
    flux_limit = args.flux_limit
    beam = create_image_from_visibility(block_vis,
                                        npixel=npixel,
예제 #2
0
log.setLevel(logging.DEBUG)
log.addHandler(logging.StreamHandler(sys.stdout))
log.addHandler(logging.StreamHandler(sys.stderr))

if __name__ == '__main__':
    results_dir = rascil_path('test_results')

    bvt = create_blockvisibility_from_ms(rascil_path('data/vis/sim-2.ms'), start_chan=35, end_chan=39)[0]
    bvt.configuration.diameter[...] = 35.0
    vt = convert_blockvisibility_to_visibility(bvt)
    vt = convert_visibility_to_stokes(vt)

    a2r = numpy.pi / (180.0 * 3600.0)

    model = create_image_from_visibility(vt, cellsize=20.0 * a2r, npixel=512,
                                         polarisation_frame=PolarisationFrame('stokesIQUV'))
    dirty, sumwt = invert_list_serial_workflow([vt], [model], context='2d')[0]
    psf, sumwt = invert_list_serial_workflow([vt], [model], context='2d', dopsf=True)[0]
    export_image_to_fits(dirty, '%s/rascil_imaging_sim_2_dirty.fits' % (results_dir))
    export_image_to_fits(psf, '%s/rascil_imaging_sim_2_psf.fits' % (results_dir))

    # Deconvolve using msclean
    comp, residual = deconvolve_cube(dirty, psf, niter=10000, threshold=0.001,
                                     fractional_threshold=0.001,
                                     algorithm='msclean',
                                     window_shape='quarter', gain=0.7,
                                     scales=[0, 3, 10, 30])

    restored = restore_cube(comp, psf, residual)

    print(qa_image(restored))
예제 #3
0
plt.plot(-vt.data['uvw'][:, 0], -vt.data['uvw'][:, 1], '.', color='b')
# plt.xlim([-400.0, 400.0])
# plt.ylim([-400.0, 400.0])
plt.show()

# To check that we got the prediction right, plot the amplitude of the visibility.
uvdist = numpy.sqrt(vt.data['uvw'][:, 0]**2 + vt.data['uvw'][:, 1]**2)
plt.clf()
plt.plot(uvdist, numpy.abs(vt.data['vis']), '.')
plt.xlabel('uvdist')
plt.ylabel('Amp Visibility')
plt.show()

model = create_image_from_visibility(
    vt,
    cellsize=cellsize,
    npixel=1024,
    polarisation_frame=PolarisationFrame('stokesIV'))
dirty, sumwt = invert_2d(vt, model, context='2d')
psf, sumwt = invert_2d(vt, model, context='2d', dopsf=True)

dirty = show_image(dirty)
dirty.show()
show_image(psf)
# print("Max, min in dirty image = %.6f, %.6f, sumwt = %f" % (dirty.data.max(), dirty.data.min(), sumwt))

# print("Max, min in PSF         = %.6f, %.6f, sumwt = %f" % (psf.data.max(), psf.data.min(), sumwt))

# export_image_to_fits(dirty, '%s/imaging_dirty.fits'%(results_dir))
# export_image_to_fits(psf, '%s/imaging_psf.fits'%(results_dir))
예제 #4
0
    def actualSetup(self, nsources=None, nvoronoi=None):

        # Set up the observation: 10 minutes at transit, with 10s integration.
        # Skip 5/6 points to avoid outstation redundancy

        nfreqwin = 1
        ntimes = 3
        self.rmax = 2500.0
        dec = -40.0 * u.deg
        frequency = [1e8]
        channel_bandwidth = [0.1e8]
        times = numpy.linspace(-10.0, 10.0, ntimes) * numpy.pi / (3600.0 * 12.0)

        phasecentre = SkyCoord(ra=+0.0 * u.deg, dec=dec, frame='icrs', equinox='J2000')
        low = create_named_configuration('LOWBD2', rmax=self.rmax)

        centre = numpy.mean(low.xyz, axis=0)
        distance = numpy.hypot(low.xyz[:, 0] - centre[0],
                               low.xyz[:, 1] - centre[1],
                               low.xyz[:, 2] - centre[2])
        lowouter = low.data[distance > 1000.0][::6]
        lowcore = low.data[distance < 1000.0][::3]
        low.data = numpy.hstack((lowcore, lowouter))

        blockvis = create_blockvisibility(low, times, frequency=frequency, channel_bandwidth=channel_bandwidth,
                                          weight=1.0, phasecentre=phasecentre,
                                          polarisation_frame=PolarisationFrame("stokesI"), zerow=True)

        vis = convert_blockvisibility_to_visibility(blockvis)
        advice = advise_wide_field(vis, guard_band_image=2.0, delA=0.02)

        cellsize = advice['cellsize']
        npixel = 512

        small_model = create_image_from_visibility(
            blockvis,
            npixel=512,
            frequency=frequency,
            nchan=nfreqwin,
            cellsize=cellsize,
            phasecentre=phasecentre)

        vis.data['imaging_weight'][...] = vis.data['weight'][...]
        vis = weight_list_serial_workflow([vis], [small_model])[0]
        vis = taper_list_serial_workflow([vis], 3 * cellsize)[0]

        blockvis = convert_visibility_to_blockvisibility(vis)

        # ### Generate the model from the GLEAM catalog, including application of the primary beam.

        beam = create_image_from_visibility(blockvis, npixel=npixel, frequency=frequency,
                                            nchan=nfreqwin, cellsize=cellsize, phasecentre=phasecentre)
        beam = create_low_test_beam(beam, use_local=False)

        flux_limit = 0.5
        original_gleam_components = create_low_test_skycomponents_from_gleam(flux_limit=flux_limit,
                                                                             phasecentre=phasecentre,
                                                                             frequency=frequency,
                                                                             polarisation_frame=PolarisationFrame(
                                                                                 'stokesI'),
                                                                             radius=0.15)

        all_components = apply_beam_to_skycomponent(original_gleam_components, beam)
        all_components = filter_skycomponents_by_flux(all_components, flux_min=flux_limit)
        voronoi_components = filter_skycomponents_by_flux(all_components, flux_min=1.5)

        def max_flux(elem):
            return numpy.max(elem.flux)

        voronoi_components = sorted(voronoi_components, key=max_flux, reverse=True)

        if nsources is not None:
            all_components = [all_components[0]]

        if nvoronoi is not None:
            voronoi_components = [voronoi_components[0]]

        self.screen = import_image_from_fits(rascil_data_path('models/test_mpc_screen.fits'))
        all_gaintables = create_gaintable_from_screen(blockvis, all_components,
                                                      self.screen)

        gleam_skymodel_noniso = [SkyModel(components=[all_components[i]], gaintable=all_gaintables[i])
                                 for i, sm in enumerate(all_components)]

        # ### Now predict the visibility for each skymodel and apply the gaintable for that skymodel,
        # returning a list of visibilities, one for each skymodel. We then sum these to obtain
        # the total predicted visibility. All images and skycomponents in the same skymodel
        # get the same gaintable applied which means that in this case each skycomponent has a separate gaintable.

        self.all_skymodel_noniso_vis = convert_blockvisibility_to_visibility(blockvis)

        ngroup = 8
        future_vis = rsexecute.scatter(self.all_skymodel_noniso_vis)
        chunks = [gleam_skymodel_noniso[i:i + ngroup] for i in range(0, len(gleam_skymodel_noniso), ngroup)]
        for chunk in chunks:
            result = predict_skymodel_list_rsexecute_workflow(future_vis, chunk, context='2d', docal=True)
            work_vis = rsexecute.compute(result, sync=True)
            for w in work_vis:
                self.all_skymodel_noniso_vis.data['vis'] += w.data['vis']
            assert numpy.max(numpy.abs(self.all_skymodel_noniso_vis.data['vis'])) > 0.0

        self.all_skymodel_noniso_blockvis = convert_visibility_to_blockvisibility(self.all_skymodel_noniso_vis)

        # ### Remove weaker of components that are too close (0.02 rad)
        idx, voronoi_components = remove_neighbouring_components(voronoi_components, 0.02)

        model = create_image_from_visibility(blockvis, npixel=npixel, frequency=frequency,
                                             nchan=nfreqwin, cellsize=cellsize, phasecentre=phasecentre)

        # Use the gaintable for the brightest component as the starting gaintable
        all_gaintables[0].gain[...] = numpy.conjugate(all_gaintables[0].gain[...])
        all_gaintables[0].gain[...] = 1.0 + 0.0j
        self.theta_list = initialize_skymodel_voronoi(model, voronoi_components, all_gaintables[0])
예제 #5
0
advice = advise_wide_field(vt,
                           guard_band_image=3.0,
                           delA=0.1,
                           oversampling_synthesised_beam=4.0)
cellsize = advice['cellsize']

# Read the venerable test image, constructing a RASCIL Image
m31image = create_test_image(frequency=frequency,
                             cellsize=cellsize,
                             phasecentre=vt.phasecentre)

# Predict the visibility for the Image
vt = predict_2d(vt, m31image, context='2d')

# Make the dirty image and point spread function
model = create_image_from_visibility(vt, cellsize=cellsize, npixel=512)
dirty, sumwt = invert_2d(vt, model, context='2d')
psf, sumwt = invert_2d(vt, model, context='2d', dopsf=True)

print("Max, min in dirty image = %.6f, %.6f, sumwt = %f" %
      (dirty.data.max(), dirty.data.min(), sumwt))
print("Max, min in PSF         = %.6f, %.6f, sumwt = %f" %
      (psf.data.max(), psf.data.min(), sumwt))

export_image_to_fits(dirty, '%s/imaging_dirty.fits' % (results_dir))
export_image_to_fits(psf, '%s/imaging_psf.fits' % (results_dir))

# Deconvolve using clean
comp, residual = deconvolve_cube(dirty,
                                 psf,
                                 niter=10000,