def predict_list_rsexecute_workflow(vis_list, model_imagelist, context, vis_slices=1, facets=1, gcfcf=None, **kwargs): """Predict, iterating over both the scattered vis_list and image The visibility and image are scattered, the visibility is predicted on each part, and then the parts are assembled. Note that this call can be converted to a set of rsexecute calls to the serial version, using argument use_serial_predict=True :param vis_list: list of vis (or graph) :param model_imagelist: list of models (or graph) :param vis_slices: Number of vis slices (w stack or timeslice) :param facets: Number of facets (per axis) :param context: Type of processing e.g. 2d, wstack, timeslice or facets :param gcfcg: tuple containing grid correction and convolution function :param kwargs: Parameters for functions in components :return: List of vis_lists For example:: dprepb_model = [rsexecute.execute(create_low_test_image_from_gleam) (npixel=npixel, frequency=[frequency[f]], channel_bandwidth=[channel_bandwidth[f]], cellsize=cellsize, phasecentre=phasecentre, polarisation_frame=PolarisationFrame("stokesI"), flux_limit=3.0, applybeam=True) for f, freq in enumerate(frequency)] dprepb_model_list = rsexecute.persist(dprepb_model_list) predicted_vis_list = predict_list_rsexecute_workflow(vis_list, model_imagelist=dprepb_model_list, context='wstack', vis_slices=51) predicted_vis_list = rsexecute.compute(predicted_vis_list , sync=True) """ if get_parameter(kwargs, "use_serial_predict", False): from rascil.workflows.serial.imaging.imaging_serial import predict_list_serial_workflow return [rsexecute.execute(predict_list_serial_workflow, nout=1) \ (vis_list=[vis_list[i]], model_imagelist=[model_imagelist[i]], vis_slices=vis_slices, facets=facets, context=context, gcfcf=gcfcf, **kwargs)[0] for i, _ in enumerate(vis_list)] # Predict_2d does not clear the vis so we have to do it here. vis_list = zero_list_rsexecute_workflow(vis_list) c = imaging_context(context) vis_iter = c['vis_iterator'] predict = c['predict'] if facets % 2 == 0 or facets == 1: actual_number_facets = facets else: actual_number_facets = facets - 1 def predict_ignore_none(vis, model, g): if vis is not None: assert isinstance(vis, Visibility) or isinstance(vis, BlockVisibility), vis assert isinstance(model, Image), model return predict(vis, model, context=context, gcfcf=g, **kwargs) else: return None if gcfcf is None: gcfcf = [rsexecute.execute(create_pswf_convolutionfunction)(m) for m in model_imagelist] # Loop over all frequency windows if facets == 1: image_results_list = list() for ivis, subvis in enumerate(vis_list): if len(gcfcf) > 1: g = gcfcf[ivis] else: g = gcfcf[0] # Create the graph to divide the visibility into slices. This is by copy. sub_vis_lists = rsexecute.execute(visibility_scatter, nout=vis_slices)(subvis, vis_iter, vis_slices) image_vis_lists = list() # Loop over sub visibility for sub_vis_list in sub_vis_lists: # Predict visibility for this sub-visibility from this image image_vis_list = rsexecute.execute(predict_ignore_none, pure=True, nout=1) \ (sub_vis_list, model_imagelist[ivis], g) # Sum all sub-visibilities image_vis_lists.append(image_vis_list) image_results_list.append(rsexecute.execute(visibility_gather, nout=1) (image_vis_lists, subvis, vis_iter)) result = image_results_list else: image_results_list_list = list() for ivis, subvis in enumerate(vis_list): # Create the graph to divide an image into facets. This is by reference. facet_lists = rsexecute.execute(image_scatter_facets, nout=actual_number_facets ** 2)( model_imagelist[ivis], facets=facets) # Create the graph to divide the visibility into slices. This is by copy. sub_vis_lists = rsexecute.execute(visibility_scatter, nout=vis_slices)\ (subvis, vis_iter, vis_slices) facet_vis_lists = list() # Loop over sub visibility for sub_vis_list in sub_vis_lists: facet_vis_results = list() # Loop over facets for facet_list in facet_lists: # Predict visibility for this subvisibility from this facet facet_vis_list = rsexecute.execute(predict_ignore_none, pure=True, nout=1)\ (sub_vis_list, facet_list, None) facet_vis_results.append(facet_vis_list) # Sum the current sub-visibility over all facets facet_vis_lists.append(rsexecute.execute(sum_predict_results)(facet_vis_results)) # Sum all sub-visibilities image_results_list_list.append( rsexecute.execute(visibility_gather, nout=1)(facet_vis_lists, subvis, vis_iter)) result = image_results_list_list return rsexecute.optimize(result)
def predict_list_serial_workflow(vis_list, model_imagelist, context, vis_slices=1, facets=1, gcfcf=None, **kwargs): """Predict, iterating over both the scattered vis_list and image The visibility and image are scattered, the visibility is predicted on each part, and then the parts are assembled. :param vis_list: list of vis :param model_imagelist: Model used to determine image parameters :param vis_slices: Number of vis slices (w stack or timeslice) :param facets: Number of facets (per axis) :param context: Type of processing e.g. 2d, wstack, timeslice or facets :param gcfcg: tuple containing grid correction and convolution function :param kwargs: Parameters for functions in components :return: List of vis_lists """ assert len(vis_list) == len( model_imagelist), "Model must be the same length as the vis_list" # Predict_2d does not clear the vis so we have to do it here. vis_list = zero_list_serial_workflow(vis_list) c = imaging_context(context) vis_iter = c['vis_iterator'] predict = c['predict'] if facets % 2 == 0 or facets == 1: actual_number_facets = facets else: actual_number_facets = facets - 1 def predict_ignore_none(vis, model, g): if vis is not None: assert isinstance(vis, Visibility) or isinstance( vis, BlockVisibility), vis assert isinstance(model, Image), model return predict(vis, model, context=context, gcfcf=g, **kwargs) else: return None if gcfcf is None: gcfcf = [create_pswf_convolutionfunction(m) for m in model_imagelist] # Loop over all frequency windows if facets == 1: image_results_list = list() for ivis, sub_vis_list in enumerate(vis_list): if len(gcfcf) > 1: g = gcfcf[ivis] else: g = gcfcf[0] # Loop over sub visibility vis_predicted = copy_visibility(sub_vis_list, zero=True) for rows in vis_iter(sub_vis_list, vis_slices): row_vis = create_visibility_from_rows(sub_vis_list, rows) row_vis_predicted = predict_ignore_none( row_vis, model_imagelist[ivis], g) if row_vis_predicted is not None: vis_predicted.data['vis'][ rows, ...] = row_vis_predicted.data['vis'] image_results_list.append(vis_predicted) return image_results_list else: image_results_list = list() for ivis, sub_vis_list in enumerate(vis_list): # Create the graph to divide an image into facets. This is by reference. facet_lists = image_scatter_facets(model_imagelist[ivis], facets=facets) facet_vis_lists = list() sub_vis_lists = visibility_scatter(sub_vis_list, vis_iter, vis_slices) # Loop over sub visibility for sub_sub_vis_list in sub_vis_lists: facet_vis_results = list() # Loop over facets for facet_list in facet_lists: # Predict visibility for this subvisibility from this facet facet_vis_list = predict_ignore_none( sub_sub_vis_list, facet_list, None) facet_vis_results.append(facet_vis_list) # Sum the current sub-visibility over all facets facet_vis_lists.append(sum_predict_results(facet_vis_results)) # Sum all sub-visibilties image_results_list.append( visibility_gather(facet_vis_lists, sub_vis_list, vis_iter)) return image_results_list
def invert_list_rsexecute_workflow(vis_list, template_model_imagelist, context, dopsf=False, normalize=True, facets=1, vis_slices=1, gcfcf=None, **kwargs): """ Sum results from invert, iterating over the scattered image and vis_list Note that this call can be converted to a set of rsexecute calls to the serial version, using argument use_serial_invert=True :param vis_list: list of vis (or graph) :param template_model_imagelist: list of template models (or graph) :param dopsf: Make the PSF instead of the dirty image :param facets: Number of facets :param normalize: Normalize by sumwt :param vis_slices: Number of slices :param context: Imaging context :param gcfcg: tuple containing grid correction and convolution function :param kwargs: Parameters for functions in components :return: List of (image, sumwt) tuples, one per vis in vis_list For example:: model_list = [rsexecute.execute(create_image_from_visibility) (v, npixel=npixel, cellsize=cellsize, polarisation_frame=pol_frame) for v in vis_list] model_list = rsexecute.persist(model_list) dirty_list = invert_list_rsexecute_workflow(vis_list, template_model_imagelist=model_list, context='wstack', vis_slices=51) dirty_sumwt_list = rsexecute.compute(dirty_list, sync=True) dirty, sumwt = dirty_sumwt_list[centre] """ # Use serial invert for each element of the visibility list. This means that e.g. iteration # through w-planes or timeslices is done sequentially thus not incurring the memory cost # of doing all at once. if get_parameter(kwargs, "use_serial_invert", False): from rascil.workflows.serial.imaging.imaging_serial import invert_list_serial_workflow return [rsexecute.execute(invert_list_serial_workflow, nout=1) \ (vis_list=[vis_list[i]], template_model_imagelist=[template_model_imagelist[i]], context=context, dopsf=dopsf, normalize=normalize, vis_slices=vis_slices, facets=facets, gcfcf=gcfcf, **kwargs)[0] for i, _ in enumerate(vis_list)] if not isinstance(template_model_imagelist, collections.Iterable): template_model_imagelist = [template_model_imagelist] c = imaging_context(context) vis_iter = c['vis_iterator'] invert = c['invert'] if facets % 2 == 0 or facets == 1: actual_number_facets = facets else: actual_number_facets = max(1, (facets - 1)) def gather_image_iteration_results(results, template_model): result = create_empty_image_like(template_model) i = 0 sumwt = numpy.zeros([template_model.nchan, template_model.npol]) for dpatch in image_scatter_facets(result, facets=facets): assert i < len(results), "Too few results in gather_image_iteration_results" if results[i] is not None: assert len(results[i]) == 2, results[i] dpatch.data[...] = results[i][0].data[...] sumwt += results[i][1] i += 1 return result, sumwt def invert_ignore_none(vis, model, gg): if vis is not None: return invert(vis, model, context=context, dopsf=dopsf, normalize=normalize, gcfcf=gg, **kwargs) else: return create_empty_image_like(model), numpy.zeros([model.nchan, model.npol]) # If we are doing facets, we need to create the gcf for each image if gcfcf is None and facets == 1: gcfcf = [rsexecute.execute(create_pswf_convolutionfunction)(template_model_imagelist[0])] # Loop over all vis_lists independently results_vislist = list() if facets == 1: for ivis, sub_vis_list in enumerate(vis_list): if len(gcfcf) > 1: g = gcfcf[ivis] else: g = gcfcf[0] # Create the graph to divide the visibility into slices. This is by copy. sub_sub_vis_lists = rsexecute.execute(visibility_scatter, nout=vis_slices)\ (sub_vis_list, vis_iter, vis_slices=vis_slices) # Iterate within each sub_sub_vis_list vis_results = list() for sub_sub_vis_list in sub_sub_vis_lists: vis_results.append(rsexecute.execute(invert_ignore_none, pure=True) (sub_sub_vis_list, template_model_imagelist[ivis], g)) results_vislist.append(sum_invert_results_rsexecute(vis_results)) result = results_vislist else: for ivis, sub_vis_list in enumerate(vis_list): # Create the graph to divide an image into facets. This is by reference. facet_lists = rsexecute.execute(image_scatter_facets, nout=actual_number_facets ** 2)( template_model_imagelist[ ivis], facets=facets) # Create the graph to divide the visibility into slices. This is by copy. sub_sub_vis_lists = rsexecute.execute(visibility_scatter, nout=vis_slices)\ (sub_vis_list, vis_iter, vis_slices=vis_slices) # Iterate within each vis_list vis_results = list() for sub_sub_vis_list in sub_sub_vis_lists: facet_vis_results = list() for facet_list in facet_lists: facet_vis_results.append( rsexecute.execute(invert_ignore_none, pure=True)(sub_sub_vis_list, facet_list, None)) vis_results.append(rsexecute.execute(gather_image_iteration_results, nout=1) (facet_vis_results, template_model_imagelist[ivis])) results_vislist.append(sum_invert_results_rsexecute(vis_results)) result = results_vislist return rsexecute.optimize(result)
def invert_list_serial_workflow(vis_list, template_model_imagelist, dopsf=False, normalize=True, facets=1, vis_slices=1, context='2d', gcfcf=None, **kwargs): """ Sum results from invert, iterating over the scattered image and vis_list :param vis_list: list of vis :param template_model_imagelist: list of template models :param dopsf: Make the PSF instead of the dirty image :param facets: Number of facets :param normalize: Normalize by sumwt :param vis_slices: Number of slices :param context: Imaging context :param gcfcg: tuple containing grid correction and convolution function :param kwargs: Parameters for functions in components :return: List of (image, sumwt) tuples, one per vis in vis_list For example:: model_list = [create_image_from_visibility (v, npixel=npixel, cellsize=cellsize, polarisation_frame=pol_frame) for v in vis_list] dirty_list = invert_list_serial_workflow(vis_list, template_model_imagelist=model_list, context='wstack', vis_slices=51) dirty, sumwt = dirty_list[centre] """ if not isinstance(template_model_imagelist, collections.abc.Iterable): template_model_imagelist = [template_model_imagelist] c = imaging_context(context) vis_iter = c['vis_iterator'] invert = c['invert'] if facets % 2 == 0 or facets == 1: actual_number_facets = facets else: actual_number_facets = max(1, (facets - 1)) def gather_image_iteration_results(results, template_model): result = create_empty_image_like(template_model) i = 0 sumwt = numpy.zeros([template_model.nchan, template_model.npol]) for dpatch in image_scatter_facets(result, facets=facets): assert i < len( results), "Too few results in gather_image_iteration_results" if results[i] is not None: assert len(results[i]) == 2, results[i] dpatch.data[...] = results[i][0].data[...] sumwt += results[i][1] i += 1 return result, sumwt def invert_ignore_none(vis, model, gg): if vis is not None: return invert(vis, model, context=context, dopsf=dopsf, normalize=normalize, gcfcf=gg, **kwargs) else: return create_empty_image_like(model), numpy.zeros( [model.nchan, model.npol]) # If we are doing facets, we need to create the gcf for each image if gcfcf is None and facets == 1: gcfcf = [create_pswf_convolutionfunction(template_model_imagelist[0])] # Loop over all vis_lists independently results_vislist = list() if facets == 1: for ivis, sub_vis_list in enumerate(vis_list): if len(gcfcf) > 1: g = gcfcf[ivis] else: g = gcfcf[0] # Iterate within each vis_list result_image = create_empty_image_like( template_model_imagelist[ivis]) result_sumwt = numpy.zeros([ template_model_imagelist[ivis].nchan, template_model_imagelist[ivis].npol ]) for rows in vis_iter(sub_vis_list, vis_slices): row_vis = create_visibility_from_rows(sub_vis_list, rows) result = invert_ignore_none(row_vis, template_model_imagelist[ivis], g) if result is not None: result_image.data += result[1][:, :, numpy.newaxis, numpy. newaxis] * result[0].data result_sumwt += result[1] result_image = normalize_sumwt(result_image, result_sumwt) results_vislist.append((result_image, result_sumwt)) else: for ivis, sub_vis_list in enumerate(vis_list): # Create the graph to divide an image into facets. This is by reference. facet_lists = image_scatter_facets(template_model_imagelist[ivis], facets=facets) # Create the graph to divide the visibility into slices. This is by copy. sub_sub_vis_lists = visibility_scatter(sub_vis_list, vis_iter, vis_slices=vis_slices) # Iterate within each vis_list vis_results = list() for sub_sub_vis_list in sub_sub_vis_lists: facet_vis_results = list() for facet_list in facet_lists: facet_vis_results.append( invert_ignore_none(sub_sub_vis_list, facet_list, None)) vis_results.append( gather_image_iteration_results( facet_vis_results, template_model_imagelist[ivis])) results_vislist.append(sum_invert_results(vis_results)) return results_vislist