예제 #1
0
def test_sieve_mask():
    """Test proper behavior of mask image, if passed int sieve"""

    with rasterio.drivers():
        shape = (20, 20)
        image = numpy.zeros(shape, dtype=rasterio.ubyte)
        image[5:15, 5:15] = 1
        image[1:3, 1:3] = 2

        # Blank mask has no effect, only areas smaller than size will be
        # removed
        mask = numpy.ones(shape, dtype=rasterio.bool_)
        sieved_image = ftrz.sieve(image, 100, mask=mask)
        truth = numpy.zeros_like(image)
        truth[5:15, 5:15] = 1
        assert numpy.array_equal(sieved_image, truth)

        # Only areas within the overlap of the mask and values will be kept
        mask = numpy.ones(shape, dtype=rasterio.bool_)
        mask[7:10, 7:10] = False
        sieved_image = ftrz.sieve(image, 100, mask=mask)
        truth = numpy.zeros_like(image)
        truth[7:10, 7:10] = 1
        assert numpy.array_equal(sieved_image, truth)

        # mask of other type than rasterio.bool_ should fail
        mask = numpy.zeros(shape, dtype=rasterio.uint8)
        with pytest.raises(ValueError):
            ftrz.sieve(image, 100, mask=mask)
예제 #2
0
def test_sieve_invalid_mask_dtype(basic_image):
    """A mask that is the wrong dtype should fail."""
    for dtype in ('int8', 'int16', 'int32'):
        with pytest.raises(ValueError):
            sieve(
                basic_image, basic_image.sum(),
                mask=np.ones(basic_image.shape, dtype=dtype)
            )
예제 #3
0
def test_sieve_invalid_mask_shape(basic_image):
    """A mask that is the wrong shape should fail."""
    with pytest.raises(ValueError):
        sieve(
            basic_image, basic_image.sum(),
            mask=np.ones(
                (basic_image.shape[0] + 10, basic_image.shape[1] + 10),
                dtype=rasterio.bool_
            )
        )
예제 #4
0
def test_sieve_band(pixelated_image, pixelated_image_file):
    """Sieving a band from a raster file should match sieve of array."""

    truth = sieve(pixelated_image, 9)

    with rasterio.open(pixelated_image_file) as src:
        band = rasterio.band(src, 1)
        assert np.array_equal(truth, sieve(band, 9))

        # Mask band should also work but will be a no-op
        assert np.array_equal(
            pixelated_image,
            sieve(band, 9, mask=band)
        )
예제 #5
0
def test_sieve_internal_driver_manager(basic_image, pixelated_image):
    """ Sieve should work without explicitly calling driver manager """

    assert np.array_equal(
        basic_image,
        sieve(pixelated_image, basic_image.sum())
    )
예제 #6
0
def test_sieve_large(basic_image):
    """
    Setting the size larger than size of feature should leave us an empty image.
    """

    with rasterio.drivers():
        assert not numpy.any(sieve(basic_image, basic_image.sum() + 1))
예제 #7
0
def test_sieve_large(basic_image):
    """
    Setting the size larger than size of feature should leave us an empty image.
    """

    with Env():
        assert not np.any(sieve(basic_image, basic_image.sum() + 1))
예제 #8
0
def test_sieve_out(basic_image):
    """Output array passed in should match the returned array."""
    output = np.zeros_like(basic_image)
    output[1:3, 1:3] = 5
    sieved_image = sieve(basic_image, basic_image.sum(), out=output)
    assert np.array_equal(basic_image, sieved_image)
    assert np.array_equal(output, sieved_image)
예제 #9
0
def test_sieve_invalid_out(basic_image):
    """Output with different dtype or shape should fail."""
    with pytest.raises(ValueError):
        sieve(
            basic_image, basic_image.sum(),
            out=np.zeros(basic_image.shape, dtype=rasterio.int32)
        )

    with pytest.raises(ValueError):
        sieve(
            basic_image, basic_image.sum(),
            out=np.zeros(
                (basic_image.shape[0] + 10, basic_image.shape[1] + 10),
                dtype=rasterio.ubyte
            )
        )
예제 #10
0
def test_sieve_blank_mask(basic_image):
    """A blank mask should have no effect."""
    mask = np.ones(basic_image.shape, dtype=rasterio.bool_)
    assert np.array_equal(
        basic_image,
        sieve(basic_image, basic_image.sum(), mask=mask)
    )
예제 #11
0
def test_sieve():
    """Test sieving a 10x10 feature from an ndarray."""

    image = numpy.zeros((20, 20), dtype=rasterio.ubyte)
    image[5:15, 5:15] = 1

    # An attempt to sieve out features smaller than 100 should not change the
    # image.
    with rasterio.drivers():
        sieved_image = ftrz.sieve(image, 100)
        assert numpy.array_equal(sieved_image, image)

    # Setting the size to 100 should leave us an empty, False image.
    with rasterio.drivers():
        sieved_image = ftrz.sieve(image, 101)
        assert not sieved_image.any()
예제 #12
0
def test_sieve_connectivity_queen(diagonal_image):
    """ Diagonals are connected, so feature is retained """

    assert np.array_equal(
        diagonal_image,
        sieve(diagonal_image, diagonal_image.sum(), connectivity=8)
    )
예제 #13
0
def test_sieve_connectivity():
    """Test proper behavior of connectivity"""

    image = numpy.zeros((20, 20), dtype=rasterio.ubyte)
    image[5:15:2, 5:15] = 1
    image[6, 4] = 1
    image[8, 15] = 1
    image[10, 4] = 1
    image[12, 15] = 1

    # Diagonals not connected, all become small features that will be removed
    sieved_image = ftrz.sieve(image, 54, connectivity=4)
    assert not sieved_image.any()

    # Diagonals connected, everything is retained
    sieved_image = ftrz.sieve(image, 54, connectivity=8)
    assert numpy.array_equal(sieved_image, image)
예제 #14
0
def test_sieve():
    """Test sieving a 10x10 feature from an ndarray."""
    image = numpy.zeros((20, 20), dtype=rasterio.ubyte)
    image[5:15,5:15] = 127
    # There should be some True pixels.
    assert image.any()
    # An attempt to sieve out features smaller than 100 should not change the
    # image.
    with rasterio.drivers():
        sieved_image = ftrz.sieve(image, 100)
        assert (
            list(map(list, numpy.where(sieved_image==127))) == 
            list(map(list, numpy.where(image==127))))
    # Setting the size to 100 should leave us an empty, False image.
    with rasterio.drivers():
        sieved_image = ftrz.sieve(image, 101)
        assert not sieved_image.any()
예제 #15
0
def test_sieve_unsupported_dtypes(basic_image):
    """Unsupported data types should raise exceptions."""
    unsupported_types = (
        ('int8', -127),
        ('uint32', 4294967295),
        ('int64', 20439845334323),
        ('float16', -9343.232),
        ('float32', 1.434532),
        ('float64', -98332.133422114)
    )

    for dtype, test_value in unsupported_types:
        with pytest.raises(ValueError):
            sieve(
                (basic_image).astype(dtype) * test_value,
                basic_image.sum()
            )
예제 #16
0
def test_sieve_blank_mask(basic_image):
    """ A blank mask should have no effect """

    mask = numpy.ones(basic_image.shape, dtype=rasterio.bool_)
    with rasterio.drivers():
        assert numpy.array_equal(
            basic_image,
            sieve(basic_image, basic_image.sum(), mask=mask)
        )
예제 #17
0
def test_sieve_out(basic_image):
    """ Output array passed in should match the returned array """

    with rasterio.drivers():
        output = numpy.zeros_like(basic_image)
        output[1:3, 1:3] = 5
        sieved_image = sieve(basic_image, basic_image.sum(), out=output)
        assert numpy.array_equal(basic_image, sieved_image)
        assert numpy.array_equal(output, sieved_image)
예제 #18
0
def test_sieve_output():
    """Test proper behavior of output image, if passed into sieve"""

    with rasterio.drivers():
        shape = (20, 20)
        image = numpy.zeros(shape, dtype=rasterio.ubyte)
        image[5:15, 5:15] = 1

        # Output should match returned array
        output = numpy.zeros_like(image)
        output[1:3, 1:3] = 5
        sieved_image = ftrz.sieve(image, 100, output=output)
        assert numpy.array_equal(output, sieved_image)

        # Output of different dtype should fail
        output = numpy.zeros(shape, dtype=rasterio.int32)
        with pytest.raises(ValueError):
            ftrz.sieve(image, 100, output)
예제 #19
0
def test_sieve_small(basic_image, pixelated_image):
    """
    Setting the size smaller than or equal to the size of the feature in the
    image should not change the image.
    """
    assert np.array_equal(
        basic_image,
        sieve(pixelated_image, basic_image.sum())
    )
예제 #20
0
def test_sieve_small(basic_image, pixelated_image):
    """
    Setting the size smaller than or equal to the size of the feature in the
    image should not change the image.
    """

    with rasterio.drivers():
        assert numpy.array_equal(
            basic_image,
            sieve(pixelated_image, basic_image.sum())
        )
예제 #21
0
def test_dtypes():
    """Test data type support for sieve"""

    rows = cols = 10
    with rasterio.drivers():
        supported_types = (
            ('int16', -32768),
            ('int32', -2147483648),
            ('uint8', 255),
            ('uint16', 65535)
        )

        for dtype, test_value in supported_types:
            image = numpy.zeros((rows, cols), dtype=dtype)
            image[2:5, 2:5] = test_value

            # Sieve should return the original image
            sieved_image = ftrz.sieve(image, 2)
            assert numpy.array_equal(image, sieved_image)
            assert numpy.dtype(sieved_image.dtype).name == dtype

            # Sieve should return a blank image
            sieved_image = ftrz.sieve(image, 10)
            assert numpy.array_equal(numpy.zeros_like(image), sieved_image)
            assert numpy.dtype(sieved_image.dtype).name == dtype

        # Unsupported types should all raise exceptions
        unsupported_types = (
            ('int8', -127),
            ('uint32', 4294967295),
            ('int64', 20439845334323),
            ('float16', -9343.232),
            ('float32', 1.434532),
            ('float64', -98332.133422114)
        )

        for dtype, test_value in unsupported_types:
            with pytest.raises(ValueError):
                image = numpy.zeros((rows, cols), dtype=dtype)
                image[2:5, 2:5] = test_value
                sieved_image = ftrz.sieve(image, 2)
예제 #22
0
def test_sieve():
    """Test sieving a 10x10 feature from an ndarray."""

    image = numpy.zeros((20, 20), dtype=rasterio.ubyte)
    image[5:15, 5:15] = 1

    # An attempt to sieve out features smaller than 100 should not change the
    # image.
    with rasterio.drivers():
        sieved_image = ftrz.sieve(image, 100)
        assert numpy.array_equal(sieved_image, image)

    # Setting the size to 100 should leave us an empty, False image.
    with rasterio.drivers():
        sieved_image = ftrz.sieve(image, 101)
        assert not sieved_image.any()

    # Invalid size value should fail
    for invalid_size in (0, 45.1234, image.size + 1):
        with pytest.raises(ValueError):
            sieved_image = ftrz.sieve(image, invalid_size)
예제 #23
0
def test_sieve_supported_dtypes(basic_image):
    """Supported data types should return valid results."""
    supported_types = (
        ('int16', -32768),
        ('int32', -2147483648),
        ('uint8', 255),
        ('uint16', 65535)
    )

    for dtype, test_value in supported_types:
        truth = (basic_image).astype(dtype) * test_value
        sieved_image = sieve(truth, basic_image.sum())
        assert np.array_equal(truth, sieved_image)
        assert np.dtype(sieved_image.dtype) == np.dtype(dtype)
예제 #24
0
def test_sieve_mask(basic_image):
    """
    Only areas within the overlap of mask and input will be kept, so long
    as mask is a bool or uint8 dtype.
    """
    mask = np.ones(basic_image.shape, dtype=rasterio.bool_)
    mask[4:5, 4:5] = False
    truth = basic_image * np.invert(mask)

    sieved_image = sieve(basic_image, basic_image.sum(), mask=mask)
    assert sieved_image.sum() > 0

    assert np.array_equal(
        truth,
        sieved_image
    )

    assert np.array_equal(
        truth.astype(rasterio.uint8),
        sieved_image
    )
예제 #25
0
def test_sieve_shade():
    with rasterio.drivers():
        with rasterio.open('tests/data/shade.tif') as src:
            sieved_image = ftrz.sieve(rasterio.band(src, 1), 42)
            assert sieved_image.shape == (1024, 1024)
예제 #26
0
def calc(ctx, command, files, output, name, dtype, masked, overwrite,
         mem_limit, creation_options):
    """A raster data calculator

    Evaluates an expression using input datasets and writes the result
    to a new dataset.

    Command syntax is lisp-like. An expression consists of an operator
    or function name and one or more strings, numbers, or expressions
    enclosed in parentheses. Functions include ``read`` (gets a raster
    array) and ``asarray`` (makes a 3-D array from 2-D arrays).

    \b
        * (read i) evaluates to the i-th input dataset (a 3-D array).
        * (read i j) evaluates to the j-th band of the i-th dataset (a
          2-D array).
        * (take foo j) evaluates to the j-th band of a dataset named foo
          (see help on the --name option above).
        * Standard numpy array operators (+, -, *, /) are available.
        * When the final result is a list of arrays, a multiple band
          output file is written.
        * When the final result is a single array, a single band output
          file is written.

    Example:

    \b
         $ rio calc "(+ 2 (* 0.95 (read 1)))" tests/data/RGB.byte.tif \\
         > /tmp/out.tif

    The command above produces a 3-band GeoTIFF with all values scaled
    by 0.95 and incremented by 2.

    \b
        $ rio calc "(asarray (+ 125 (read 1)) (read 1) (read 1))" \\
        > tests/data/shade.tif /tmp/out.tif

    The command above produces a 3-band RGB GeoTIFF, with red levels
    incremented by 125, from the single-band input.

    The maximum amount of memory used to perform caculations defaults to
    64 MB. This number can be increased to improve speed of calculation.

    """
    import numpy as np

    try:
        with ctx.obj['env']:
            output, files = resolve_inout(files=files,
                                          output=output,
                                          overwrite=overwrite)
            inputs = ([tuple(n.split('=')) for n in name] + [(None, n)
                                                             for n in files])
            sources = [rasterio.open(path) for name, path in inputs]

            first = sources[0]
            kwargs = first.profile
            kwargs.update(**creation_options)
            dtype = dtype or first.meta['dtype']
            kwargs['dtype'] = dtype

            # Extend snuggs.
            snuggs.func_map['read'] = _read_array
            snuggs.func_map['band'] = lambda d, i: _get_bands(
                inputs, sources, d, i)
            snuggs.func_map['bands'] = lambda d: _get_bands(inputs, sources, d)
            snuggs.func_map['fillnodata'] = lambda *args: fillnodata(*args)
            snuggs.func_map['sieve'] = lambda *args: sieve(*args)

            dst = None

            # The windows iterator is initialized with a single sample.
            # The actual work windows will be added in the second
            # iteration of the loop.
            work_windows = [(None, Window(0, 0, 16, 16))]

            for ij, window in work_windows:

                ctxkwds = OrderedDict()

                for i, ((name, path), src) in enumerate(zip(inputs, sources)):

                    # Using the class method instead of instance
                    # method. Latter raises
                    #
                    # TypeError: astype() got an unexpected keyword
                    # argument 'copy'
                    #
                    # possibly something to do with the instance being
                    # a masked array.
                    ctxkwds[name or '_i%d' % (i + 1)] = src.read(masked=masked,
                                                                 window=window)

                res = snuggs.eval(command, **ctxkwds)

                if (isinstance(res, np.ma.core.MaskedArray) and
                    (tuple(LooseVersion(np.__version__).version) <
                     (1, 9) or tuple(LooseVersion(np.__version__).version) >
                     (1, 10))):
                    res = res.filled(kwargs['nodata'])

                if len(res.shape) == 3:
                    results = np.ndarray.astype(res, dtype, copy=False)
                else:
                    results = np.asanyarray(
                        [np.ndarray.astype(res, dtype, copy=False)])

                # The first iteration is only to get sample results and from them
                # compute some properties of the output dataset.
                if dst is None:
                    kwargs['count'] = results.shape[0]
                    dst = rasterio.open(output, 'w', **kwargs)
                    work_windows.extend(
                        _chunk_output(dst.width,
                                      dst.height,
                                      dst.count,
                                      np.dtype(dst.dtypes[0]).itemsize,
                                      mem_limit=mem_limit))

                # In subsequent iterations we write results.
                else:
                    dst.write(results, window=window)

    except snuggs.ExpressionError as err:
        click.echo("Expression Error:")
        click.echo('  %s' % err.text)
        click.echo(' ' + ' ' * err.offset + "^")
        click.echo(err)
        raise click.Abort()

    finally:
        if dst:
            dst.close()
        for src in sources:
            src.close()
예제 #27
0
def segmentation(model=None,
                 params=None,
                 src=None,
                 bands=[1, 2, 3],
                 image=None,
                 mask=None,
                 modal_radius=None,
                 sieve_size=250):
    """
    Segment the image.

    Segment the image using an algorithm from sklearn.segmentation.

    Parameters
    ----------
    model: sklearn.segmentation model
        A model from sklearn.segmentation (e.g., slic, slic0, felzenswalb)

    params: sklearn.segmentation model parameters
        The unique parameters for the selected segmentation algorithm. Will be
        passed to the model as the kwargs argument.

    src: Rasterio datasource
        A rasterio-style datasource, created using:
        with rasterio.open('path') as src.
        There must be at least 3 bands of image data. If there are more than
        3 bands, the first three will be used (see 'bands' parameter). This 
        parameter is optional. **If it is not provided, then image and transform
        must be supplied.--really?? Not any more, right?**
    
    bands: array of integers
        The array of 3 bands to read from src as the RGB image for segmentation.
        
    image: numpy.array
        A 3-band (RGB) image used for segmentation. The shape of the image
        must be ordered as follows: (bands, rows, columns).
        This parameter is optional.
    
    mask: numpy.array
        A 1-band image mask. The shape of the mask must be ordered as follows:
        (rows, columns). This parameter is optional.
    
    modal_radius: integer
        Integer representing the radius of a raster disk (i.e., circular
        roving window). Optional. If not set, no modal filter will be applied.
    
    sieve_size: integer
        An integer representing the smallest number of pixels that will be
        included as a unique segment. Segments this size or smaller will be
        merged with the neighboring segment with the most pixels. 

    Returns
    -------
    numpy.array
        A numpy array arranged as rasterio would read it (bands=1, rows, cols)
        so it's ready to be written by rasterio

    """
    if src is not None:
        img = bsq_to_bip(src.read(bands, masked=True))
        mask = src.read_masks(1)
        mask[mask > 0] = 1
    else:
        img = bsq_to_bip(image)
        mask[mask > 255] = 1

    output = model(img, **params).astype('int32')

    while np.ndarray.min(output) < 1:
        output += 1

    if modal_radius != None:
        output = modal(output.astype('int16'),
                       selem=disk(modal_radius),
                       mask=mask)


#    output = features.sieve(output, sieve_size, mask=mask,
#                            connectivity=8) * mask
    output = features.sieve(output, sieve_size, mask=mask) * mask
    #    output = label(output, connectivity=2)
    output = label(output, connectivity=1)

    output = bip_to_bsq(output[:, :, np.newaxis]) * mask

    return output
예제 #28
0
import numpy
import rasterio
from rasterio.features import sieve, shapes


# Register GDAL and OGR drivers.
with rasterio.drivers():
    
    # Read a raster to be sieved.
    with rasterio.open('tests/data/shade.tif') as src:
        shade = src.read_band(1)
    
    # Print the number of shapes in the source raster.
    print("Slope shapes: %d" % len(list(shapes(shade))))
    
    # Sieve out features 13 pixels or smaller.
    sieved = sieve(shade, 13)

    # Print the number of shapes in the sieved raster.
    print("Sieved (13) shapes: %d" % len(list(shapes(sieved))))

    # Write out the sieved raster.
    with rasterio.open('example-sieved.tif', 'w', **src.meta) as dst:
        dst.write_band(1, sieved)

# Dump out gdalinfo's report card and open (or "eog") the TIFF.
print(subprocess.check_output(
    ['gdalinfo', '-stats', 'example-sieved.tif']))
subprocess.call(['open', 'example-sieved.tif'])

예제 #29
0
def test_sieve_connectivity_rook(diagonal_image):
    """Diagonals are not connected, so feature is removed."""
    assert not np.any(
        sieve(diagonal_image, diagonal_image.sum(), connectivity=4)
    )
예제 #30
0
def test_sieve_connectivity_queen(diagonal_image):
    """Diagonals are connected, so feature is retained."""
    assert np.array_equal(
        diagonal_image,
        sieve(diagonal_image, diagonal_image.sum(), connectivity=8)
    )
예제 #31
0
import subprocess
import numpy
import rasterio
from rasterio.features import sieve, shapes

os.chdir('/projectnb/landsat/projects/Colombia/Mosaics/M2B/')

# Register GDAL and OGR drivers.
with rasterio.drivers():

    # Read a raster to be sieved.
    with rasterio.open('2001-01-01_seq.tif') as src:
        shade = src.read(1)

    # Sieve out features 13 pixels or smaller.
    sieved = sieve(shade, 4, out=numpy.zeros(src.shape, src.dtypes[0]))

    # Print the number of shapes in the sieved raster.
    print("Sieved (13) shapes: %d" % len(list(shapes(sieved))))

    # Write out the sieved raster.
    kwargs = src.meta
    kwargs['transform'] = kwargs.pop('affine')
    with rasterio.open('example-sieved.tif', 'w', **kwargs) as dst:
        dst.write(sieved, indexes=1)

# Dump out gdalinfo's report card and open (or "eog") the TIFF.
#print(subprocess.check_output(
#    ['gdalinfo', '-stats', 'example-sieved.tif']))
#subprocess.call(['open', 'example-sieved.tif'])
예제 #32
0
def ClassifyValleyBottomTile(row: int, col: int, params: Parameters,
                             drainage: SwathDrainageDict, **kwargs):
    """
    Classify valley bottom features - tile algorithm
    """

    dem_raster = params.dem.tilename(row=row, col=col, **kwargs)
    # drainage_raster = params.drainage.tilename(row=row, col=col, **kwargs)
    height_raster = params.height.tilename(row=row, col=col, **kwargs)
    axis_raster = params.axis.tilename(row=row, col=col, **kwargs)
    measure_raster = params.measure.tilename(row=row, col=col, **kwargs)
    distance_raster = params.distance.tilename(row=row, col=col, **kwargs)

    if not measure_raster.exists():
        return

    output = params.output.tilename(row=row, col=col, **kwargs)

    slope = calculate_slope(dem_raster)
    swaths, measures = calculate_swaths(measure_raster, params.swath_length)

    # with rio.open(drainage_raster) as ds:
    #     drainage = ds.read(1)

    with rio.open(axis_raster) as ds:
        axis = ds.read(1)
        axis_nodata = ds.nodata

    with rio.open(distance_raster) as ds:
        distance = np.abs(ds.read(1))

    if isinstance(params.thresholds, Callable):

        resolve_thresholds = params.thresholds

    else:

        resolve_thresholds = make_resolve_thresholds_fun(params.thresholds)

    with rio.open(height_raster) as ds:

        height = ds.read(1)
        out = np.full_like(height, MASK_EXTERIOR, dtype='uint8')

        for ax in np.unique(axis):

            if ax == axis_nodata:
                continue

            for sw in np.unique(swaths[axis == ax]):

                if sw == 0 or (sw - 1) >= len(measures):
                    continue

                sw_measure = measures[sw - 1]
                sw_mask = (axis == ax) & (swaths == sw)

                sw_drainage = drainage[ax, sw_measure]
                sw_height_max = params.height_max
                thresholds = resolve_thresholds(sw_drainage)

                out[sw_mask & (distance <= thresholds.distance_max) &
                    (height <= sw_height_max)] = MASK_VALLEY_BOTTOM

                out[sw_mask & (out == MASK_VALLEY_BOTTOM) &
                    (slope > thresholds.slope_max) &
                    (distance >
                     thresholds.distance_min)] = MASK_FLOOPLAIN_RELIEF

        out = features.sieve(out, params.patch_min_pixels)
        speedup.reclass_margin(out, MASK_FLOOPLAIN_RELIEF, MASK_EXTERIOR,
                               MASK_SLOPE)

        for ax in np.unique(axis):

            if ax == axis_nodata:
                continue

            for sw in np.unique(swaths[axis == ax]):

                if sw == 0 or (sw - 1) >= len(measures):
                    continue

                sw_measure = measures[sw - 1]
                sw_mask = (axis == ax) & (swaths == sw)

                sw_drainage = drainage[ax, sw_measure]
                sw_height_max = params.height_max
                thresholds = resolve_thresholds(sw_drainage)

                out[sw_mask & (out == MASK_SLOPE) &
                    (height <= thresholds.height_max) &
                    (distance >
                     thresholds.distance_min)] = MASK_FLOOPLAIN_RELIEF

                out[sw_mask & (out == MASK_VALLEY_BOTTOM) &
                    (height > thresholds.height_max) &
                    (distance > thresholds.distance_min)] = MASK_TERRACE

        profile = ds.profile.copy()

        if not params.slope.none:

            profile.update(nodata=999.0, compress='deflate')
            with rio.open(params.slope.tilename(row=row, col=col, **kwargs),
                          'w', **profile) as dst:
                dst.write(slope, 1)

        profile.update(dtype='uint8', nodata=0, compress='deflate')
        with rio.open(output, 'w', **profile) as dst:
            dst.write(out, 1)
예제 #33
0
import subprocess

import numpy
import rasterio
from rasterio.features import sieve, shapes

# Register GDAL and OGR drivers.
with rasterio.drivers():

    # Read a raster to be sieved.
    with rasterio.open('rasterio/tests/data/shade.tif') as src:
        shade = src.read_band(1)

    # Print the number of shapes in the source raster.
    print "Slope shapes: %d" % len(list(shapes(shade)))

    # Sieve out features 13 pixels or smaller.
    sieved = sieve(shade, 13)

    # Print the number of shapes in the sieved raster.
    print "Sieved (13) shapes: %d" % len(list(shapes(sieved)))

    # Write out the sieved raster.
    with rasterio.open('example-sieved.tif', 'w', **src.meta) as dst:
        dst.write_band(1, sieved)

# Dump out gdalinfo's report card and open (or "eog") the TIFF.
print subprocess.check_output(['gdalinfo', '-stats', 'example-sieved.tif'])
subprocess.call(['open', 'example-sieved.tif'])
예제 #34
0
def ValleyMaskTile(axis, row, col, threshold):

    tileset = config.tileset()

    def _tilename(name):
        return tileset.tilename(name, axis=axis, row=row, col=col)

    datafile = config.filename('metrics_talweg', axis=axis)
    hand_raster = _tilename('ax_nearest_height')
    swath_raster = _tilename('ax_swaths_refaxis')
    output_mask = _tilename('ax_valley_mask_refined')
    # output_height = _tilename('ax_nearest_height_refined')

    if not (os.path.exists(hand_raster) and os.path.exists(swath_raster)):
        return

    data = xr.open_dataset(datafile).swap_dims({'measure': 'swath'})

    with rio.open(swath_raster) as ds:
        swaths = ds.read(1)
        swath_nodata = ds.nodata

    with rio.open(hand_raster) as ds:

        hand = ds.read(1)

        nodata = 255
        out = np.full_like(hand, nodata, dtype='uint8')

        for swid in np.unique(swaths):

            if swid == swath_nodata:
                continue

            try:
                talheight = data['talweg_height_median'].sel(swath=swid).values
            except KeyError:
                talheight = np.nan

            if np.isnan(talheight):

                swath_mask = (swaths == swid)
                out[swath_mask] = 0

            else:

                # TODO threshold = f(swid, bottom width, drainage area)

                minh = min(-talheight - threshold, -threshold)
                maxh = max(-talheight + threshold, threshold)

                swath_mask = (swaths == swid)
                bottom_mask = (hand >= minh) & (hand < maxh)

                out[swath_mask] = 1
                out[swath_mask & bottom_mask] = 0

        out = features.sieve(out, 100) # TODO externalize parameter
        speedup.reclass_margin(out, 1, 255, 2)

        profile = ds.profile.copy()
        profile.update(dtype='uint8', nodata=nodata, compress='deflate')

        with rio.open(output_mask, 'w', **profile) as dst:
            dst.write(out, 1)
예제 #35
0
def test_sieve_connectivity_rook(diagonal_image):
    """ Diagonals are not connected, so feature is removed """

    assert not np.any(
        sieve(diagonal_image, diagonal_image.sum(), connectivity=4)
    )
예제 #36
0
파일: FlatMap.py 프로젝트: sdunesme/fct-cli
def FlatMap(row, col, min_drainage, **kwargs):
    """
    Flat areas continuous to drainage network

    Values :
        1: Flat (low topography, continuous to drainage network)
        2: Not Flat
        3: Slope/Crest Flat
        255: No-data
    """

    from scipy.ndimage.morphology import binary_closing

    dem_raster = config.tileset().tilename('filled', row=row, col=col)
    flow_raster = config.tileset().tilename('flow', row=row, col=col)
    acc_raster = config.tileset().tilename('acc', row=row, col=col)
    output = config.tileset().tilename('flatmap', row=row, col=col)

    with rio.open(dem_raster) as ds:

        flow = ta.flowdir(ds.read(1), ds.nodata)
        flats = np.uint8(flow == 0)
        del flow

        # Sieve/Morphological Closing

        # structure = np.array([[0, 1, 0],[1, 1, 1],[0, 1, 0]], dtype=np.uint8)
        structure = np.array(
            [[0, 0, 1, 0, 0], [0, 1, 1, 1, 0], [1, 1, 1, 1, 1],
             [0, 1, 1, 1, 0], [0, 0, 1, 0, 0]],
            dtype=np.uint8)
        flats = np.uint8(
            binary_closing(flats, structure=structure, iterations=2))
        flats = sieve(flats, 800)

        # Continuity with stream network derived from acc

        method = 1

        if method == 1:

            # Method 1 Watershed max

            # 1 = flat, 2 = not flat
            flats = 2 - np.float32(flats)

            with rio.open(acc_raster) as ds2:

                mask = (ds2.read(1) >= min_drainage)
                out = np.zeros_like(mask, dtype=np.float32)
                out[mask] = 1
                # flats[mask] = 1

            with rio.open(flow_raster) as ds2:
                flow = ds2.read(1)

            ta.watershed_max(flow, out, flats, fill_value=0, feedback=None)

            out = np.uint8(out)
            out[mask] = flats[mask]

            out[out == 2] = 3
            out[(flats == 1) & (out == 3)] = 2
            out[flow == -1] = 255

        elif method == 2:

            # Method 2 Shortest Max

            # 1 = stream, 2 = flat, 3 = not flat
            flats = 3 - np.float32(flats)

            with rio.open(acc_raster) as ds2:

                mask = (ds2.read(1) >= min_drainage)
                out = np.zeros_like(mask, dtype=np.float32)
                # out[mask] = 1
                flats[mask] = 1

            ta.shortest_max(flats,
                            0,
                            1,
                            out=out,
                            feedback=ta.ConsoleFeedback())

            out = np.uint8(out) - 1
            out[mask] = flats[mask] - 1

            out[out == 2] = 3
            out[(flats == 2) & (out == 3)] = 2

        # End Method Options

        speedup.spread_connected(out, 1)

        profile = ds.profile.copy()
        profile.update(compress='deflate', dtype=np.uint8, nodata=255)

        with rio.open(output, 'w', **profile) as dst:
            dst.write(out, 1)
예제 #37
0
파일: calc.py 프로젝트: simudream/rasterio
def calc(ctx, command, files, name, dtype):
    """A raster data calculator

    Evaluates an expression using input datasets and writes the result
    to a new dataset.

    Command syntax is lisp-like. An expression consists of an operator
    or function name and one or more strings, numbers, or expressions
    enclosed in parentheses. Functions include ``read`` (gets a raster
    array) and ``asarray`` (makes a 3-D array from 2-D arrays).

    \b
        * (read i) evaluates to the i-th input dataset (a 3-D array).
        * (read i j) evaluates to the j-th band of the i-th dataset (a 2-D
          array).
        * (take foo j) evaluates to the j-th band of a dataset named foo (see
          help on the --name option above).
        * Standard numpy array operators (+, -, *, /) are available.
        * When the final result is a list of arrays, a multi band output
          file is written.
        * When the final result is a single array, a single band output
          file is written.

    Example:

    \b
         $ rio calc "(+ 2 (* 0.95 (read 1)))" tests/data/RGB.byte.tif \\
         > /tmp/out.tif

    Produces a 3-band GeoTIFF with all values scaled by 0.95 and
    incremented by 2.

    \b
        $ rio calc "(asarray (+ 125 (read 1)) (read 1) (read 1))" \\
        > tests/data/shade.tif /tmp/out.tif

    Produces a 3-band RGB GeoTIFF, with red levels incremented by 125,
    from the single-band input.

    """
    import numpy as np

    verbosity = (ctx.obj and ctx.obj.get('verbosity')) or 1
    logger = logging.getLogger('rio')

    try:
        with rasterio.drivers(CPL_DEBUG=verbosity > 2):
            output = files[-1]

            inputs = ([tuple(n.split('=')) for n in name] +
                      [(None, n) for n in files[:-1]])

            with rasterio.open(inputs[0][1]) as first:
                kwargs = first.meta
                kwargs['transform'] = kwargs.pop('affine')
                dtype = dtype or first.meta['dtype']
                kwargs['dtype'] = dtype

            ctxkwds = {}
            for i, (name, path) in enumerate(inputs):
                with rasterio.open(path) as src:
                    # Using the class method instead of instance
                    # method. Latter raises
                    #
                    # TypeError: astype() got an unexpected keyword
                    # argument 'copy'
                    #
                    # possibly something to do with the instance being
                    # a masked array.
                    ctxkwds[name or '_i%d' % (i+1)] = src.read()

            # Extend snuggs.
            snuggs.func_map['read'] = read_array
            snuggs.func_map['band'] = lambda d, i: get_bands(inputs, d, i)
            snuggs.func_map['bands'] = lambda d: get_bands(inputs, d)
            snuggs.func_map['fillnodata'] = lambda *args: fillnodata(*args)
            snuggs.func_map['sieve'] = lambda *args: sieve(*args)

            res = snuggs.eval(command, **ctxkwds)

            if len(res.shape) == 3:
                results = np.ndarray.astype(res, dtype, copy=False)
            else:
                results = np.asanyarray(
                    [np.ndarray.astype(res, dtype, copy=False)])

            kwargs['count'] = results.shape[0]

            with rasterio.open(output, 'w', **kwargs) as dst:
                dst.write(results)

        sys.exit(0)
    except snuggs.ExpressionError as err:
        click.echo("Expression Error:")
        click.echo('  %s' % err.text)
        click.echo(' ' +  ' ' * err.offset + "^")
        click.echo(err)
        sys.exit(1)
    except Exception as err:
        t, v, tb = sys.exc_info()
        for line in traceback.format_exception_only(t, v):
            click.echo(line, nl=False)
        sys.exit(1)
예제 #38
0
def calc(ctx, command, files, name, dtype, masked):
    """A raster data calculator

    Evaluates an expression using input datasets and writes the result
    to a new dataset.

    Command syntax is lisp-like. An expression consists of an operator
    or function name and one or more strings, numbers, or expressions
    enclosed in parentheses. Functions include ``read`` (gets a raster
    array) and ``asarray`` (makes a 3-D array from 2-D arrays).

    \b
        * (read i) evaluates to the i-th input dataset (a 3-D array).
        * (read i j) evaluates to the j-th band of the i-th dataset (a 2-D
          array).
        * (take foo j) evaluates to the j-th band of a dataset named foo (see
          help on the --name option above).
        * Standard numpy array operators (+, -, *, /) are available.
        * When the final result is a list of arrays, a multi band output
          file is written.
        * When the final result is a single array, a single band output
          file is written.

    Example:

    \b
         $ rio calc "(+ 2 (* 0.95 (read 1)))" tests/data/RGB.byte.tif \\
         > /tmp/out.tif

    Produces a 3-band GeoTIFF with all values scaled by 0.95 and
    incremented by 2.

    \b
        $ rio calc "(asarray (+ 125 (read 1)) (read 1) (read 1))" \\
        > tests/data/shade.tif /tmp/out.tif

    Produces a 3-band RGB GeoTIFF, with red levels incremented by 125,
    from the single-band input.

    """
    import numpy as np

    verbosity = (ctx.obj and ctx.obj.get('verbosity')) or 1
    logger = logging.getLogger('rio')

    try:
        with rasterio.drivers(CPL_DEBUG=verbosity > 2):
            output = files[-1]

            inputs = ([tuple(n.split('='))
                       for n in name] + [(None, n) for n in files[:-1]])

            with rasterio.open(inputs[0][1]) as first:
                kwargs = first.meta
                kwargs['transform'] = kwargs.pop('affine')
                dtype = dtype or first.meta['dtype']
                kwargs['dtype'] = dtype

            ctxkwds = {}
            for i, (name, path) in enumerate(inputs):
                with rasterio.open(path) as src:
                    # Using the class method instead of instance
                    # method. Latter raises
                    #
                    # TypeError: astype() got an unexpected keyword
                    # argument 'copy'
                    #
                    # possibly something to do with the instance being
                    # a masked array.
                    ctxkwds[name or '_i%d' % (i + 1)] = src.read(masked=masked)

            # Extend snuggs.
            snuggs.func_map['read'] = read_array
            snuggs.func_map['band'] = lambda d, i: get_bands(inputs, d, i)
            snuggs.func_map['bands'] = lambda d: get_bands(inputs, d)
            snuggs.func_map['fillnodata'] = lambda *args: fillnodata(*args)
            snuggs.func_map['sieve'] = lambda *args: sieve(*args)

            res = snuggs.eval(command, **ctxkwds)

            if len(res.shape) == 3:
                results = np.ndarray.astype(res, dtype, copy=False)
            else:
                results = np.asanyarray(
                    [np.ndarray.astype(res, dtype, copy=False)])

            kwargs['count'] = results.shape[0]

            with rasterio.open(output, 'w', **kwargs) as dst:
                dst.write(results)

        sys.exit(0)
    except snuggs.ExpressionError as err:
        click.echo("Expression Error:")
        click.echo('  %s' % err.text)
        click.echo(' ' + ' ' * err.offset + "^")
        click.echo(err)
        sys.exit(1)
    except Exception as err:
        t, v, tb = sys.exc_info()
        for line in traceback.format_exception_only(t, v):
            click.echo(line, nl=False)
        sys.exit(1)
예제 #39
0
def test_dtypes():
    """Test data type support for sieve"""

    rows = cols = 10
    with rasterio.drivers():
        supported_types = (
            ('int16', -32768),
            ('int32', -2147483648),
            ('uint8', 255),
            ('uint16', 65535)
        )

        for dtype, test_value in supported_types:
            image = numpy.zeros((rows, cols), dtype=dtype)
            image[2:5, 2:5] = test_value

            # Sieve should return the original image
            sieved_image = ftrz.sieve(image, 2)
            assert numpy.array_equal(image, sieved_image)
            assert numpy.dtype(sieved_image.dtype).name == dtype

            # Sieve should return a blank image
            sieved_image = ftrz.sieve(image, 10)
            assert numpy.array_equal(numpy.zeros_like(image), sieved_image)
            assert numpy.dtype(sieved_image.dtype).name == dtype

        # Unsupported types should all raise exceptions
        unsupported_types = (
            ('int8', -127),
            ('uint32', 4294967295),
            ('int64', 20439845334323),
            ('float16', -9343.232),
            ('float32', 1.434532),
            ('float64', -98332.133422114)
        )

        for dtype, test_value in unsupported_types:
            with pytest.raises(ValueError):
                image = numpy.zeros((rows, cols), dtype=dtype)
                image[2:5, 2:5] = test_value
                ftrz.sieve(image, 2)

        # Test mask types
        image = numpy.zeros((rows, cols), dtype='uint8')
        image.fill(255)

        supported_mask_types = (
            ('bool', 1),
            ('uint8', 255)
        )
        for dtype, mask_value in supported_mask_types:
            mask = numpy.zeros((rows, cols), dtype=dtype)
            mask[2:5, 2:5] = mask_value
            sieved_image = ftrz.sieve(image, 2, mask=mask)
            assert numpy.array_equal(image, sieved_image)

        unsupported_mask_types = (
            ('int8', -127),
            ('int16', -32768)
        )
        for dtype, mask_value in unsupported_mask_types:
            with pytest.raises(ValueError):
                mask = numpy.zeros((rows, cols), dtype=dtype)
                mask[2:5, 2:5] = mask_value
                ftrz.sieve(image, 2, mask=mask)
예제 #40
0
def test_sieve_connectivity_invalid(basic_image):
    with pytest.raises(ValueError):
        sieve(basic_image, 54, connectivity=12)
예제 #41
0
def test_sieve_connectivity_invalid(basic_image):
    with pytest.raises(ValueError):
        sieve(basic_image, 54, connectivity=12)
예제 #42
0
    def sieve(
        self,
        size=2,
        mask=None,
        connectivity=4,
        file_path=None,
        driver="GTiff",
        nodata=None,
        dtype=None,
        **kwargs,
    ):
        """Replace pixels with their largest neighbor

        Thin wrapper around the rasterio.features.sieve method.

        Parameters
        ----------
        size : integer (default 2)
            Minimum number of contigous pixels to retain
        
        mask : ndarray (optional, default None)
            Values of False or 0 will be excluded from the sieving process
        
        connectivity : integer (default 4)
            Use 4 or 8 pixel connectivity for grouping pixels into features.
            Default is 4.

        file_path : str (optional, default None)
            Optional path to save calculated Raster object. If not
            specified then a tempfile is used.

        driver : str (default 'GTiff')
            Named of GDAL-supported driver for file export.

        nodata : any number (optional, default None)
            Nodata value for new dataset. If not specified then a nodata value is set
            based on the minimum permissible value of the Raster's data type.

        dtype : str (optional, default None)
            Optionally specify a numpy compatible data type when saving to file. If not
            specified, a data type is set based on the data type of the RasterLayer.

        kwargs : opt
            Optional named arguments to pass to the format drivers. For example can be
            `compress="deflate"` to add compression.

        Returns
        -------
        pyspatialml.RasterLayer
            Filled RasterLayer
        """
        arr = sieve(
            source=self.read(masked=True),
            size=size,
            mask=mask,
            connectivity=connectivity,
        )

        layer = self._write(arr, file_path, driver, dtype, nodata, **kwargs)

        return layer
예제 #43
0
def SlopeContinuity(bassin, zone, workdir, overwrite):
    """
    DCOME
    """

    from rasterio.features import sieve

    basename = 'SLOPE_CLS_CONTINUOUS.tif'
    flow_raster = os.path.join(workdir, bassin, zone, 'FLOW.tif')
    slope_raster = os.path.join(workdir, bassin, zone, 'SLOPE_CLS.tif')
    stream_network = os.path.join(workdir, bassin, zone, 'StreamNetwork.shp')
    output = os.path.join(workdir, bassin, zone, basename)

    if os.path.exists(output) and not overwrite:
        important('Output already exists : %s' % output)
        return

    with rio.open(slope_raster) as ds:

        slopes = sieve(ds.read(1), 800)
        streams = RasterizeStream(slopes, ds.transform, ds.nodata,
                                  stream_network, 0)

        # data = np.float32(slopes) + 1
        # data[slopes == ds.nodata] = ds.nodata
        # data[streams == 1] = 0

        # feedback = ta.ConsoleFeedback()

        # distance = np.float32(ta.shortest_distance(data, ds.nodata, 0, feedback=feedback))
        # out = np.zeros_like(slopes, dtype=np.float32)
        # data[distance < 100] = 1
        # data[streams == 1] = 0

        # feedback = ta.ConsoleFeedback()
        # ta.shortest_max(data, ds.nodata, 0, out=out, feedback=feedback)

        # out = np.uint8(out) - 1
        # out[distance < 100] = slopes[distance < 100]
        # out[slopes == ds.nodata] = ds.nodata

        out = np.zeros_like(slopes, dtype=np.float32)
        out[streams == 1] = 1

        with rio.open(flow_raster) as ds2:
            flow = ds2.read(1)

        feedback = ta.ConsoleFeedback()
        ta.watershed_max(flow,
                         out,
                         np.float32(slopes),
                         fill_value=0,
                         feedback=feedback)

        out = np.uint8(out)
        # out[streams == 1] = slopes[streams == 1]
        out[slopes == ds.nodata] = ds.nodata

        profile = ds.profile.copy()
        profile.update(compress='deflate')

        with rio.open(output, 'w', **profile) as dst:
            dst.write(out, 1)

    success('Saved result to %s' % output)
예제 #44
0
def test_sieve_large(basic_image):
    """
    Setting the size larger than size of feature should leave us an empty image.
    """
    assert not np.any(sieve(basic_image, basic_image.sum() + 1))
예제 #45
0
def test_sieve_invalid_size(basic_image):
    for invalid_size in (0, 45.1234, basic_image.size + 1):
        with pytest.raises(ValueError):
            sieve(basic_image, invalid_size)
예제 #46
0
파일: sieve.py 프로젝트: yangmaoer/rasterio
import numpy as np
import rasterio
from rasterio.features import sieve, shapes

# Register GDAL and OGR drivers.
with rasterio.Env():

    # Read a raster to be sieved.
    with rasterio.open('tests/data/shade.tif') as src:
        shade = src.read(1)

    # Print the number of shapes in the source raster.
    print("Slope shapes: %d" % len(list(shapes(shade))))

    # Sieve out features 13 pixels or smaller.
    sieved = sieve(shade, 13, out=np.zeros(src.shape, src.dtypes[0]))

    # Print the number of shapes in the sieved raster.
    print("Sieved (13) shapes: %d" % len(list(shapes(sieved))))

    # Write out the sieved raster.
    kwargs = src.meta
    kwargs['transform'] = kwargs.pop('affine')
    with rasterio.open('example-sieved.tif', 'w', **kwargs) as dst:
        dst.write(sieved, indexes=1)

# Dump out gdalinfo's report card and open (or "eog") the TIFF.
print(subprocess.check_output(['gdalinfo', '-stats', 'example-sieved.tif']))
subprocess.call(['open', 'example-sieved.tif'])
예제 #47
0
def test_sieve_blank_mask(basic_image):
    """A blank mask should have no effect."""
    mask = np.ones(basic_image.shape, dtype=rasterio.bool_)
    assert np.array_equal(basic_image,
                          sieve(basic_image, basic_image.sum(), mask=mask))
예제 #48
0
import rasterio
from rasterio.features import sieve, shapes


# Register GDAL and OGR drivers.
with rasterio.drivers():
    
    # Read a raster to be sieved.
    with rasterio.open('tests/data/shade.tif') as src:
        shade = src.read(1)
    
    # Print the number of shapes in the source raster.
    print("Slope shapes: %d" % len(list(shapes(shade))))
    
    # Sieve out features 13 pixels or smaller.
    sieved = sieve(shade, 13, out=numpy.zeros(src.shape, src.dtypes[0]))

    # Print the number of shapes in the sieved raster.
    print("Sieved (13) shapes: %d" % len(list(shapes(sieved))))

    # Write out the sieved raster.
    kwargs = src.meta
    kwargs['transform'] = kwargs.pop('affine')
    with rasterio.open('example-sieved.tif', 'w', **kwargs) as dst:
        dst.write(sieved, indexes=1)

# Dump out gdalinfo's report card and open (or "eog") the TIFF.
print(subprocess.check_output(
    ['gdalinfo', '-stats', 'example-sieved.tif']))
subprocess.call(['open', 'example-sieved.tif'])
예제 #49
0
            b1, b2, b3 = src.read()

            profile = src.profile
            profile.update(
                # dtype=rasterio.float32,
                dtype=rasterio.uint8,
                count=1,
                compress='lzw',
                nodata=0)

        red_index = numpy.zeros(b1.shape)
        red_index = (b1.astype(float) - b2.astype(float)) / (b1.astype(float) +
                                                             b2.astype(float))
        mascara_rojo = numpy.zeros(b1.shape)
        mascara_rojo = (red_index > 0.2) * 1 & (red_index < 0.7) * 1 & (b1 >
                                                                        60) * 1
        mascara_rojo = sieve(mascara_rojo.astype(rasterio.uint8),
                             size=400,
                             connectivity=8)

        # with rasterio.open('red_index.tif', 'w', **profile) as dst:
        #    dst.write(red_index.astype(rasterio.float32), 1)

        with rasterio.open(
                '{0}{1}_mascara.tif'.format(salida,
                                            os.path.splitext(f)[0]), 'w',
                **profile) as dst:
            dst.nodata = 0
            dst.write(mascara_rojo.astype(rasterio.uint8), 1)
    else:
        pass
예제 #50
0
def test_sieve_invalid_size(basic_image):
    with Env():
        for invalid_size in (0, 45.1234, basic_image.size + 1):
            with pytest.raises(ValueError):
                sieve(basic_image, invalid_size)
예제 #51
0
def calc(ctx, command, files, output, name, dtype, masked, force_overwrite,
         creation_options):
    """A raster data calculator

    Evaluates an expression using input datasets and writes the result
    to a new dataset.

    Command syntax is lisp-like. An expression consists of an operator
    or function name and one or more strings, numbers, or expressions
    enclosed in parentheses. Functions include ``read`` (gets a raster
    array) and ``asarray`` (makes a 3-D array from 2-D arrays).

    \b
        * (read i) evaluates to the i-th input dataset (a 3-D array).
        * (read i j) evaluates to the j-th band of the i-th dataset (a 2-D
          array).
        * (take foo j) evaluates to the j-th band of a dataset named foo (see
          help on the --name option above).
        * Standard numpy array operators (+, -, *, /) are available.
        * When the final result is a list of arrays, a multi band output
          file is written.
        * When the final result is a single array, a single band output
          file is written.

    Example:

    \b
         $ rio calc "(+ 2 (* 0.95 (read 1)))" tests/data/RGB.byte.tif \\
         > /tmp/out.tif

    Produces a 3-band GeoTIFF with all values scaled by 0.95 and
    incremented by 2.

    \b
        $ rio calc "(asarray (+ 125 (read 1)) (read 1) (read 1))" \\
        > tests/data/shade.tif /tmp/out.tif

    Produces a 3-band RGB GeoTIFF, with red levels incremented by 125,
    from the single-band input.

    """
    import numpy as np

    try:
        with ctx.obj['env']:
            output, files = resolve_inout(files=files,
                                          output=output,
                                          force_overwrite=force_overwrite)

            inputs = ([tuple(n.split('=')) for n in name] + [(None, n)
                                                             for n in files])

            with rasterio.open(inputs[0][1]) as first:
                kwargs = first.meta
                kwargs.update(**creation_options)
                dtype = dtype or first.meta['dtype']
                kwargs['dtype'] = dtype

            ctxkwds = {}
            for i, (name, path) in enumerate(inputs):
                with rasterio.open(path) as src:
                    # Using the class method instead of instance
                    # method. Latter raises
                    #
                    # TypeError: astype() got an unexpected keyword
                    # argument 'copy'
                    #
                    # possibly something to do with the instance being
                    # a masked array.
                    ctxkwds[name or '_i%d' % (i + 1)] = src.read(masked=masked)

            # Extend snuggs.
            snuggs.func_map['read'] = read_array
            snuggs.func_map['band'] = lambda d, i: get_bands(inputs, d, i)
            snuggs.func_map['bands'] = lambda d: get_bands(inputs, d)
            snuggs.func_map['fillnodata'] = lambda *args: fillnodata(*args)
            snuggs.func_map['sieve'] = lambda *args: sieve(*args)

            res = snuggs.eval(command, **ctxkwds)

            if (isinstance(res, np.ma.core.MaskedArray) and
                (tuple(LooseVersion(np.__version__).version) <
                 (1, 9) or tuple(LooseVersion(np.__version__).version) >
                 (1, 10))):
                res = res.filled(kwargs['nodata'])

            if len(res.shape) == 3:
                results = np.ndarray.astype(res, dtype, copy=False)
            else:
                results = np.asanyarray(
                    [np.ndarray.astype(res, dtype, copy=False)])

            kwargs['count'] = results.shape[0]

            with rasterio.open(output, 'w', **kwargs) as dst:
                dst.write(results)

    except snuggs.ExpressionError as err:
        click.echo("Expression Error:")
        click.echo('  %s' % err.text)
        click.echo(' ' + ' ' * err.offset + "^")
        click.echo(err)
        raise click.Abort()
def main(cadastre_filepath, dst_tif_filepath, dst_shp_filepath, dst_res,
         num_patches, kernel_radius, urban_threshold, buffer_dist, dst_nodata):
    logger = logging.getLogger(__name__)
    logger.info("preparing raster agglomeration LULC from %s",
                cadastre_filepath)

    cadastre_arr, cadastre_transform = utils.rasterize_cadastre(
        cadastre_filepath, dst_res, dst_nodata)
    logger.info("rasterized cadastre vector LULC dataset to shape %s",
                str(cadastre_arr.shape))

    # get the urban extent mask according to the criteria used in the "Atlas
    # of Urban Expansion, The 2016 Edition" by Angel, S. et al.
    uf = ufp.UrbanFootprinter(cadastre_arr,
                              urban_classes=utils.URBAN_CLASSES,
                              res=dst_res)
    urban_mask = uf.compute_footprint_mask(kernel_radius,
                                           urban_threshold,
                                           num_patches=num_patches,
                                           buffer_dist=buffer_dist)
    logger.info(
        "obtained extent of the %d largest urban cluster(s) (%d pixels)",
        num_patches, np.sum(urban_mask))

    # exclude lake
    # TODO: arguments to customize `LULC_WATER_VAL` and `SIEVE_SIZE`
    label_arr = ndi.label(cadastre_arr == utils.LULC_WATER_VAL,
                          ndi.generate_binary_structure(2, 2))[0]
    cluster_label = np.argmax(np.unique(label_arr,
                                        return_counts=True)[1][1:]) + 1
    largest_cluster = np.array(label_arr == cluster_label, dtype=np.uint8)
    urban_mask = features.sieve(
        np.array(urban_mask.astype(bool) & ~largest_cluster.astype(bool),
                 dtype=urban_mask.dtype), SIEVE_SIZE)

    # get window and transform of valid data points, i.e., the computed extent
    extent_window = windows.get_data_window(urban_mask, nodata=0)
    extent_transform = windows.transform(extent_window, cadastre_transform)
    dst_arr = np.where(urban_mask, cadastre_arr,
                       dst_nodata)[windows.window_index(extent_window)]

    # dump it
    # ACHTUNG: use hardcoded CRS string (for the same CRS) to avoid issues
    with rio.open(
            dst_tif_filepath,
            'w',
            driver='GTiff',
            width=extent_window.width,
            height=extent_window.height,
            count=1,
            crs=utils.CRS,  # cadastre_gdf.crs
            transform=extent_transform,
            dtype=np.uint8,
            nodata=dst_nodata) as dst:
        dst.write(dst_arr, 1)
    logger.info("dumped rasterized dataset to %s", dst_tif_filepath)

    if dst_shp_filepath:
        # save the geometry extent

        # get the urban mask geometry
        # urban_mask_geom = uf.compute_footprint_mask_shp(
        #     kernel_radius,
        #     urban_threshold,
        #     largest_patch_only=largest_patch_only,
        #     buffer_dist=buffer_dist,
        #     transform=extent_transform)
        urban_mask_geom = geometry.shape(
            max([(geom, val) for geom, val in features.shapes(
                np.array(dst_arr != dst_nodata, dtype=np.uint8),
                transform=extent_transform) if val == 1],
                key=lambda geom: len(geom[0]['coordinates']))[0])

        # get the window and transform of the lake extent
        lake_mask = features.sieve(largest_cluster, SIEVE_SIZE)
        extent_window = windows.get_data_window(lake_mask, nodata=0)
        extent_transform = windows.transform(extent_window, cadastre_transform)
        lake_mask = lake_mask[windows.window_index(extent_window)]

        # get the lake mask geometry
        lake_mask_geom = geometry.shape(
            max([(geom, val) for geom, val in features.shapes(
                lake_mask, transform=extent_transform) if val == 1],
                key=lambda geom: len(geom[0]['coordinates']))[0])

        # ACHTUNG: use hardcoded CRS string (for the same CRS) to avoid issues
        gpd.GeoSeries([urban_mask_geom, lake_mask_geom],
                      crs=utils.CRS).to_file(dst_shp_filepath)
        logger.info("dumped extent geometry to %s", dst_shp_filepath)
예제 #53
0
def test_sieve_internal_driver_manager(basic_image, pixelated_image):
    """Sieve should work without explicitly calling driver manager."""
    assert np.array_equal(
        basic_image,
        sieve(pixelated_image, basic_image.sum())
    )
예제 #54
0
def DelineateZoneHydro(basin, zone, outlets_shapefile, root, overwrite):
    """
    """

    output = os.path.join(root, basin, zone, 'ZONEHYDRO_MNT.shp')
    flow_raster = os.path.join(root, basin, zone, 'FLOW.tif')

    if os.path.exists(output) and not overwrite:
        # click.secho('Output already exists : %s' % output, fg='yellow')
        return

    cdzonecnt = itertools.count(1)
    cdzones = defaultdict(lambda: next(cdzonecnt))

    with rio.open(flow_raster) as ds:

        flow = ds.read(1)
        watersheds = np.zeros_like(flow, dtype=np.float32)

        def isdata(i, j):
            return i >= 0 and i < ds.height and j >= 0 and j < ds.width

        with fiona.open(outlets_shapefile) as fs:

            crs = fs.crs
            driver = fs.driver

            for feature in fs:

                cdzone = feature['properties']['CDZONEHYDR']
                drainage = feature['properties']['DRAINAGE']

                # if drainage > 0 and drainage < 200000:
                #     continue

                x, y = feature['geometry']['coordinates']
                i, j = ds.index(x, y)

                if isdata(i, j):

                    # print(cdzone)
                    idzone = cdzones[cdzone]
                    watersheds[i, j] = idzone

        fill_value = 0
        feedback = ta.SilentFeedback()
        ta.watershed(flow, watersheds, fill_value, feedback)

        profile = ds.profile.copy()
        profile.update(compress='deflate', nodata=0, dtype=np.float32)
        with rio.open(os.path.join(root, basin, zone, 'WATERSHEDS.tif'), 'w',
                      **profile) as dst:
            dst.write(watersheds, 1)

        watersheds = sieve(np.int32(watersheds), 40)

        CdToZones = {v: k for k, v in cdzones.items()}

        schema = {
            'geometry': 'Polygon',
            'properties': [('CdZoneHydr', 'str:4')]
        }
        polygons = shapes(watersheds, (watersheds == cdzones[zone]),
                          connectivity=8,
                          transform=ds.transform)
        options = dict(driver=driver, crs=crs, schema=schema)

        with fiona.open(output, 'w', **options) as dst:
            for polygon, value in polygons:
                if value > 0:
                    geom = asShape(polygon).buffer(0.0)
                    feature = {
                        'geometry': geom.__geo_interface__,
                        'properties': {
                            'CdZoneHydr': CdToZones[value]
                        }
                    }
                    dst.write(feature)
예제 #55
0
def ExtractZoneHydro(bassin, zone, root, output, flowdir, epsg, overwrite,
                     overwrite_flow, debug):
    """
    Re-délimitation des zones hydrographiques BDC à la résolution du MNT

    1. Rastérise le réseau hydro cartographié en utilisant le même algorithme que celui utilisé dans l'algorithme `StreamToRaster` de la FCT
    2. Calcule le plan de drainage en utilisant la variante de l'algorithme Priority Flood de Lindsay
    3. Réalise une analyse de bassin versant (Watershed Analysis)
    4. Vectorize le polygone correspondant à la zone indiquée
    """

    logger.info('Processing zone %s' % zone)
    logger.info('Working Directory = %s' % root)

    raster_template = os.path.join(root, bassin, zone, 'DEM5M.tif')
    stream_network = os.path.join(root, bassin, zone, 'StreamNetwork.shp')
    outfilename = os.path.join(root, bassin, zone, output)

    if os.path.exists(outfilename) and not overwrite:
        # logger.warning('Output already exists : %s' % outfilename)
        return

    feedback = ta.SilentFeedback()
    ds = rio.open(raster_template)

    logger.info('Rasterize Stream Network')

    cdzonecnt = itertools.count(1)
    cdzones = defaultdict(lambda: next(cdzonecnt))
    fill_value = 0
    # burn_value = 1
    junctions = np.zeros((ds.height, ds.width), dtype=np.uint8)
    streams = StreamToRaster(raster_template, ds.nodata, stream_network,
                             fill_value, cdzones, junctions)

    if debug:

        filename = os.path.join(root, bassin, zone, 'STREAMS.tif')
        logger.debug('Write %s' % filename)

        profile = ds.profile.copy()
        profile.update(compress='deflate')

        with rio.open(filename, 'w', **profile) as dst:
            dst.write(streams, 1)

        filename = os.path.join(root, bassin, zone, 'JUNCTIONS.tif')
        logger.debug(' Write %s' % filename)

        profile.update(dtype=np.uint8, nodata=255, compress='deflate')

        with rio.open(filename, 'w', **profile) as dst:
            dst.write(junctions, 1)

    flow_raster = os.path.join(root, bassin, zone, flowdir)

    if os.path.exists(flow_raster) and not overwrite_flow:

        logger.info('Read Flow Direction from %s' % flow_raster)

        with rio.open(flow_raster) as src:
            flow = src.read(1)

    else:

        logger.info('Calculate Flow Direction')

        elevations = ds.read(1)
        zdelta = 0.0001
        flow = ta.burnfill(elevations,
                           streams,
                           junctions,
                           ds.nodata,
                           zdelta,
                           feedback=feedback)
        feedback.setProgress(100)

        logger.info('Save to %s' % flow_raster)

        profile = ds.profile.copy()
        profile.update(dtype=np.int16, nodata=-1, compress='deflate')

        with rio.open(flow_raster, 'w', **profile) as dst:
            dst.write(flow, 1)

    logger.info('Calculate Watersheds')

    watersheds = np.copy(streams)
    ta.watershed(flow, watersheds, fill_value, feedback)
    feedback.setProgress(100)

    if debug:

        filename = os.path.join(root, bassin, zone, 'WATERSHEDS.tif')
        logger.debug('Write %s' % filename)

        profile = ds.profile.copy()
        profile.update(dtype=np.int32, nodata=0, compress='deflate')

        with rio.open(filename, 'w', **profile) as dst:
            dst.write(np.int32(watersheds), 1)

    logger.info('Vectorize Polygons')

    watersheds = sieve(np.int32(watersheds), 400)

    schema = {'geometry': 'Polygon', 'properties': [('CdZoneHydr', 'str:4')]}
    crs = fiona.crs.from_epsg(epsg)

    CdToZones = {v: k for k, v in cdzones.items()}

    polygons = shapes(watersheds, (watersheds == cdzones[zone]),
                      connectivity=8,
                      transform=ds.transform)
    options = dict(driver='ESRI Shapefile', crs=crs, schema=schema)

    with fiona.open(outfilename, 'w', **options) as dst:
        for polygon, value in polygons:
            if value > 0:
                geom = asShape(polygon).buffer(0.0)
                feature = {
                    'geometry': geom.__geo_interface__,
                    'properties': {
                        'CdZoneHydr': CdToZones[value]
                    }
                }
                dst.write(feature)

    logger.info('Everything Ok')