예제 #1
0
    def load_model(self, logdir, step):
        '''Load a model (identified by the config used for construction) and return it'''
        # 1. Construct model 创建model
        model = registry.construct('model', self.config['model'], preproc=self.model_preproc, device=self.device)
        model.to(self.device)
        model.eval()

        # 2. Restore its parameters
        saver = saver_mod.Saver({"model": model})
        last_step = saver.restore(logdir, step=step, map_location=self.device, item_keys=["model"])
        if not last_step:
            raise Exception(f"Attempting to infer on untrained model in {logdir}, step={step}")
        return model
예제 #2
0
    def train(self, config, modeldir):
        # slight difference here vs. unrefactored train: The init_random starts over here.
        # Could be fixed if it was important by saving random state at end of init
        with self.init_random:
            # We may be able to move optimizer and lr_scheduler to __init__ instead. Empirically it works fine. I think that's because saver.restore
            # resets the state by calling optimizer.load_state_dict.
            # But, if there is no saved file yet, I think this is not true, so might need to reset the optimizer manually?
            # For now, just creating it from scratch each time is safer and appears to be the same speed, but also means you have to pass in the config to train which is kind of ugly.

            # TODO: not nice
            if config["optimizer"].get("name", None) == 'bertAdamw':
                bert_params = list(self.model.encoder.bert_model.parameters())
                assert len(bert_params) > 0
                non_bert_params = []
                for name, _param in self.model.named_parameters():
                    if "bert" not in name:
                        non_bert_params.append(_param)
                assert len(non_bert_params) + len(bert_params) == len(
                    list(self.model.parameters()))

                optimizer = registry.construct('optimizer',
                                               config['optimizer'],
                                               non_bert_params=non_bert_params,
                                               bert_params=bert_params)
                lr_scheduler = registry.construct(
                    'lr_scheduler',
                    config.get('lr_scheduler', {'name': 'noop'}),
                    param_groups=[
                        optimizer.non_bert_param_group,
                        optimizer.bert_param_group
                    ])
            else:
                optimizer = registry.construct('optimizer',
                                               config['optimizer'],
                                               params=self.model.parameters())
                lr_scheduler = registry.construct(
                    'lr_scheduler',
                    config.get('lr_scheduler', {'name': 'noop'}),
                    param_groups=optimizer.param_groups)

        # 2. Restore model parameters
        saver = saver_mod.Saver({
            "model": self.model,
            "optimizer": optimizer
        },
                                keep_every_n=self.train_config.keep_every_n)
        last_step = saver.restore(modeldir, map_location=self.device)

        if "pretrain" in config and last_step == 0:
            pretrain_config = config["pretrain"]
            _path = pretrain_config["pretrained_path"]
            _step = pretrain_config["checkpoint_step"]
            pretrain_step = saver.restore(_path,
                                          step=_step,
                                          map_location=self.device,
                                          item_keys=["model"])
            saver.save(modeldir,
                       pretrain_step)  # for evaluating pretrained models
            last_step = pretrain_step

        # 3. Get training data somewhere
        with self.data_random:
            train_data = self.model_preproc.dataset('train')
            train_data_loader = self._yield_batches_from_epochs(
                torch.utils.data.DataLoader(
                    train_data,
                    batch_size=self.train_config.batch_size,
                    shuffle=True,
                    drop_last=True,
                    collate_fn=lambda x: x))
        train_eval_data_loader = torch.utils.data.DataLoader(
            train_data,
            batch_size=self.train_config.eval_batch_size,
            collate_fn=lambda x: x)

        val_data = self.model_preproc.dataset('val')
        val_data_loader = torch.utils.data.DataLoader(
            val_data,
            batch_size=self.train_config.eval_batch_size,
            collate_fn=lambda x: x)

        # 4. Start training loop
        with self.data_random:
            for batch in train_data_loader:
                # Quit if too long
                if last_step >= self.train_config.max_steps:
                    break

                # Evaluate model
                if last_step % self.train_config.eval_every_n == 0:
                    if self.train_config.eval_on_train:
                        self._eval_model(
                            self.logger,
                            self.model,
                            last_step,
                            train_eval_data_loader,
                            'train',
                            num_eval_items=self.train_config.num_eval_items)
                    if self.train_config.eval_on_val:
                        self._eval_model(
                            self.logger,
                            self.model,
                            last_step,
                            val_data_loader,
                            'val',
                            num_eval_items=self.train_config.num_eval_items)

                # Compute and apply gradient
                with self.model_random:
                    for _i in range(self.train_config.num_batch_accumulated):
                        if _i > 0: batch = next(train_data_loader)
                        loss = self.model.compute_loss(batch)
                        norm_loss = loss / self.train_config.num_batch_accumulated
                        norm_loss.backward()

                    if self.train_config.clip_grad:
                        torch.nn.utils.clip_grad_norm_(optimizer.bert_param_group["params"], \
                                                       self.train_config.clip_grad)
                    optimizer.step()
                    lr_scheduler.update_lr(last_step)
                    optimizer.zero_grad()

                # Report metrics
                if last_step % self.train_config.report_every_n == 0:
                    self.logger.log(
                        f'Step {last_step}: loss={loss.item():.4f}')

                last_step += 1
                # Run saver
                if last_step == 1 or last_step % self.train_config.save_every_n == 0:
                    saver.save(modeldir, last_step)

            # Save final model
            saver.save(modeldir, last_step)
예제 #3
0
    def train(self, config, modeldir, trainset, valset):
        # slight difference here vs. unrefactored train: The init_random starts over here.
        # Could be fixed if it was important by saving random state at end of init
        with self.init_random:
            # We may be able to move optimizer and lr_scheduler to __init__ instead. Empirically it works fine. I think that's because saver.restore
            # resets the state by calling optimizer.load_state_dict.
            # But, if there is no saved file yet, I think this is not true, so might need to reset the optimizer manually?
            # For now, just creating it from scratch each time is safer and appears to be the same speed, but also means you have to pass in the config to train which is kind of ugly.

            # TODO: not nice
            if config["optimizer"].get("name", None) == 'bertAdamw':
                bert_params = list(self.model.encoder.bert_model.parameters())
                assert len(bert_params) > 0
                non_bert_params = []
                for name, _param in self.model.named_parameters():
                    if "bert" not in name:
                        non_bert_params.append(_param)
                assert len(non_bert_params) + len(bert_params) == len(
                    list(self.model.parameters()))

                optimizer = registry.construct('optimizer',
                                               config['optimizer'],
                                               non_bert_params=non_bert_params,
                                               bert_params=bert_params)
            else:
                optimizer = registry.construct('optimizer',
                                               config['optimizer'],
                                               params=self.model.parameters())

        # 2. Restore model parameters
        saver = saver_mod.Saver({
            "model": self.model,
            "optimizer": optimizer
        },
                                keep_every_n=self.train_config.keep_every_n)
        last_step = saver.restore(modeldir, map_location=self.device)

        if "pretrain" in config and last_step == 0:
            pretrain_config = config["pretrain"]
            _path = pretrain_config["pretrained_path"]
            _step = pretrain_config["checkpoint_step"]
            pretrain_step = saver.restore(_path,
                                          step=_step,
                                          map_location=self.device,
                                          item_keys=["model"])
            print("pretrain restored! pretrain step: %d" % pretrain_step)
            saver.save(modeldir,
                       pretrain_step)  # for evaluating pretrained models
            #last_step = pretrain_step

        # 3. Get training data somewhere
        with self.data_random:
            train_data = self.model_preproc.dataset(trainset)
            train_data_loader = self._yield_batches_from_epochs(
                torch.utils.data.DataLoader(
                    train_data,
                    batch_size=self.train_config.batch_size,
                    shuffle=True,
                    drop_last=True,
                    collate_fn=lambda x: x))
        train_eval_data_loader = torch.utils.data.DataLoader(
            train_data,
            batch_size=self.train_config.eval_batch_size,
            collate_fn=lambda x: x)

        val_data = self.model_preproc.dataset(valset)

        print("train: ")
        for _item in train_data.components[1]:
            if _item.tree is None:
                print("?")

        dev_badidxs = []
        print("val: ")
        for _idx, _item in enumerate(val_data.components[1]):
            if _item.tree is None:
                dev_badidxs.append(_idx)
                print("!")

        assert len(val_data.components[0]) == len(val_data.components[1])
        new_first = []
        new_second = []
        for _idx in range(len(val_data.components[1])):
            if _idx not in dev_badidxs:
                new_first.append(val_data.components[0][_idx])
                new_second.append(val_data.components[1][_idx])
        val_data.components = copy.deepcopy((new_first, new_second))

        val_data_loader = torch.utils.data.DataLoader(
            val_data,
            batch_size=self.train_config.eval_batch_size,
            collate_fn=lambda x: x)

        # 4. Start training loop
        with self.data_random:

            last_val_loss = None
            lr_decay_countdown = MAX_LRDECAY_COUNTDOWN

            for batch in train_data_loader:
                # Quit if too long
                if last_step >= self.train_config.max_steps:
                    break

                # Evaluate model
                if last_step % self.train_config.eval_every_n == 0:
                    if self.train_config.eval_on_train:
                        train_loss = self._eval_model(
                            self.logger,
                            self.model,
                            last_step,
                            train_eval_data_loader,
                            'train',
                            num_eval_items=self.train_config.num_eval_items)
                    if self.train_config.eval_on_val:
                        eval_loss = self._eval_model(
                            self.logger,
                            self.model,
                            last_step,
                            val_data_loader,
                            'val',
                            num_eval_items=self.train_config.num_eval_items)

                    if last_val_loss is None or eval_loss < last_val_loss:
                        last_val_loss = eval_loss
                        lr_decay_countdown = MAX_LRDECAY_COUNTDOWN
                    elif lr_decay_countdown > 0:
                        lr_decay_countdown -= 1
                    else:
                        current_lr = None
                        for p in optimizer.param_groups:
                            p['lr'] *= LR_DECAY_RATE
                            current_lr = p['lr']
                        self.logger.log(f'LR decay: down to {current_lr}')

                if DEBUG:
                    current_lr = None
                    for p in optimizer.param_groups:
                        p['lr'] *= LR_DECAY_RATE
                        current_lr = p['lr']
                    self.logger.log(f'LR decay: down to {current_lr}')

                # Compute and apply gradient
                with self.model_random:
                    for _i in range(self.train_config.num_batch_accumulated):
                        if _i > 0: batch = next(train_data_loader)
                        loss = self.model.compute_loss(batch)
                        norm_loss = loss / self.train_config.num_batch_accumulated
                        norm_loss.backward()

                    if self.train_config.clip_grad:
                        torch.nn.utils.clip_grad_norm_(optimizer.bert_param_group["params"], \
                                                       self.train_config.clip_grad)
                    optimizer.step()
                    optimizer.zero_grad()

                # Report metrics
                if last_step % self.train_config.report_every_n == 0:
                    self.logger.log(
                        f'Step {last_step}: loss={loss.item():.4f}')

                last_step += 1
                # Run saver
                if last_step == 1 or last_step % self.train_config.save_every_n == 0:
                    saver.save(modeldir, last_step)
                    print("model saved at %d step" % last_step)

            # Save final model
            saver.save(modeldir, last_step)
예제 #4
0
    def finetune_on_database(self,
                             infer_output_path,
                             database,
                             config,
                             model_load_dir,
                             beam_size,
                             output_history,
                             use_heuristic,
                             metrics_list,
                             scores,
                             take_grad_steps=True,
                             batch_size="1"):
        if database:
            current_infer_output_path = infer_output_path + "/" + database
        else:
            current_infer_output_path = infer_output_path + "/" + "entire_val"
        os.makedirs(os.path.dirname(current_infer_output_path), exist_ok=True)
        infer_output = open(current_infer_output_path, 'w')

        spider_data = registry.construct('dataset',
                                         self.config['data']['val'],
                                         database=database)
        val_data = self.model_preproc.dataset('val', database=database)

        # val_data_loader = self._yield_batches_from_epochs(
        #     torch.utils.data.DataLoader(val_data, batch_size=1, collate_fn=lambda x: x,
        #                                 shuffle=False))

        assert len(val_data) == len(spider_data)
        if len(val_data) == 0:
            return
        if batch_size == "32":
            if len(val_data) < 32:
                return
        print("database:", database)

        if batch_size == "n^2":
            indices = np.random.permutation(
                self.get_no_repeat_data_indices(spider_data))
            print("length of data:", len(val_data))
            print("length of data after removing repeat entries:",
                  len(indices))
        else:
            indices = np.random.permutation(len(val_data))

        # TODO: RANDOMIZE DATA
        optimizer, lr_scheduler = self.construct_optimizer_and_lr_scheduler(
            config)
        saver = saver_mod.Saver({
            "model": self.model,
            "optimizer": optimizer
        },
                                keep_every_n=self.finetune_config.keep_every_n)
        last_step = saver.restore(model_load_dir, map_location=self.device)
        self.logger.log(f"Loaded trained model; last_step:{last_step}")
        current_batch = []
        clear_batch = False
        current_number = 0
        for i in tqdm.tqdm(indices):
            current_number += 1
            orig_item, preproc_item = spider_data[i], val_data[i]

            with torch.no_grad():
                decoded = self._infer_one(self.model, orig_item, preproc_item,
                                          beam_size, output_history,
                                          use_heuristic)
                infer_output.write(
                    json.dumps({
                        'index': int(i),
                        'beams': decoded,
                    }) + '\n')
                infer_output.flush()

            if take_grad_steps:
                if batch_size == "1":
                    current_batch = [preproc_item]
                elif batch_size == "32":
                    if current_number % 32 != 0:
                        current_batch.append(preproc_item)
                        clear_batch = False
                        continue
                    else:
                        clear_batch = True
                else:
                    current_batch.append(preproc_item)
                try:
                    with self.model_random:

                        loss = self.model.compute_loss(current_batch)
                        norm_loss = loss / self.finetune_config.num_batch_accumulated
                        norm_loss.backward()

                        if self.finetune_config.clip_grad:
                            torch.nn.utils.clip_grad_norm_(optimizer.bert_param_group["params"], \
                                                           self.finetune_config.clip_grad)
                        optimizer.step()
                        lr_scheduler.update_lr(last_step)
                        optimizer.zero_grad()
                    if clear_batch:
                        current_batch = []

                # stats = self._eval_model(self.logger, self.model, last_step, batch, 'val',
                #                          self.finetune_config.report_every_n)
                # val_losses.append(stats['loss'])
                except KeyError:
                    self.logger.log("keyError")
                    current_batch = []
                    continue
            # except AssertionError:
            #     self.logger.log("AssertionError")
            #     continue
        inferred = open(current_infer_output_path)
        metrics = spider_data.Metrics(spider_data)
        inferred_lines = list(inferred)
        # if len(inferred_lines) < len(spider_data):
        #     raise Exception(f'Not enough inferred: {len(inferred_lines)} vs {len(spider_data)}')

        for line in inferred_lines:
            infer_results = json.loads(line)
            if infer_results['beams']:
                inferred_code = infer_results['beams'][0]['inferred_code']
            else:
                inferred_code = None
            if 'index' in infer_results:
                metrics.add(spider_data[infer_results['index']], inferred_code)
            else:
                metrics.add(None,
                            inferred_code,
                            obsolete_gold_code=infer_results['gold_code'])
        final_metrics = metrics.finalize()
        metrics_list.append(final_metrics)
        #print(final_metrics['total_scores']['all']['exact'])
        scores.append((database, final_metrics['total_scores']['all']['exact'],
                       len(indices)))
        # if last_step % self.finetune_config.save_every_n == 0:
        # saver.save(model_save_dir+'/seed_'+seed, last_step)

        #print('scores', scores)
        #print("average score:", self.aggregate_score(scores))
        return scores