def start_connected_emptyhead_cluster(): """Starts head with no resources.""" cluster = Cluster(initialize_head=True, connect=True, head_node_args={ "num_cpus": 0, "_internal_config": json.dumps({"num_heartbeats_timeout": 10}) }) # Pytest doesn't play nicely with imports _register_all() yield cluster # The code after the yield will run as teardown code. ray.shutdown() cluster.shutdown()
def ray_start_combination(request): num_nodes = request.param[0] num_workers_per_scheduler = request.param[1] # Start the Ray processes. cluster = Cluster(initialize_head=True, head_node_args={ "num_cpus": 10, "redis_max_memory": 10**8 }) for i in range(num_nodes - 1): cluster.add_node(num_cpus=10) ray.init(address=cluster.address) yield num_nodes, num_workers_per_scheduler, cluster # The code after the yield will run as teardown code. ray.shutdown() cluster.shutdown()
def test_raylet_socket_name(shutdown_only): sock1 = unix_socket_create_path("i_am_a_temp_socket_1") ray.init(raylet_socket_name=sock1) unix_socket_verify(sock1) ray.shutdown() try: unix_socket_delete(sock1) except OSError: pass # It could have been removed by Ray. cluster = Cluster(True) sock2 = unix_socket_create_path("i_am_a_temp_socket_2") cluster.add_node(raylet_socket_name=sock2) unix_socket_verify(sock2) cluster.shutdown() try: unix_socket_delete(sock2) except OSError: pass # It could have been removed by Ray.
def start_connected_emptyhead_cluster(): """Starts head with no resources.""" cluster = Cluster(initialize_head=True, connect=True, head_node_args={ "num_cpus": 0, "_system_config": { "num_heartbeats_timeout": 10 } }) # Pytest doesn't play nicely with imports _register_all() register_trainable("__fake_remote", MockRemoteTrainer) register_trainable("__fake_durable", MockDurableTrainer) yield cluster # The code after the yield will run as teardown code. ray.shutdown() cluster.shutdown()
def test_ray_status_multinode(): from ray.cluster_utils import Cluster cluster = Cluster() for _ in range(4): cluster.add_node(num_cpus=2) runner = CliRunner() def output_ready(): result = runner.invoke(scripts.status) result.stdout return not result.exception and "memory" in result.output wait_for_condition(output_ready) result = runner.invoke(scripts.status, []) _check_output_via_pattern("test_ray_status_multinode.txt", result) ray.shutdown() cluster.shutdown()
def test_temp_plasma_store_socket(): ray.init(plasma_store_socket_name="/tmp/i_am_a_temp_socket") assert os.path.exists( "/tmp/i_am_a_temp_socket"), "Specified socket path not found." ray.shutdown() try: os.remove("/tmp/i_am_a_temp_socket") except OSError: pass # It could have been removed by Ray. cluster = Cluster(True) cluster.add_node(plasma_store_socket_name="/tmp/i_am_a_temp_socket_2") assert os.path.exists( "/tmp/i_am_a_temp_socket_2"), "Specified socket path not found." cluster.shutdown() try: os.remove("/tmp/i_am_a_temp_socket_2") except OSError: pass # It could have been removed by Ray.
def ray_cluster(): try: from ray.cluster_utils import Cluster except ModuleNotFoundError: from ray._private.cluster_utils import Cluster cluster = Cluster() remote_nodes = [] num_nodes = 3 for i in range(num_nodes): remote_nodes.append(cluster.add_node(num_cpus=10)) if len(remote_nodes) == 1: ray.init(address=cluster.address) mo.setup_cluster(address_to_resources=TEST_ADDRESS_TO_RESOURCES) yield RayActorDriver.stop_cluster() ray.shutdown() cluster.shutdown()
def test_ray_status_multinode(): cluster = Cluster() for _ in range(4): cluster.add_node(num_cpus=2) runner = CliRunner() def output_ready(): result = runner.invoke(scripts.status) result.stdout if not result.exception and "memory" in result.output: return True raise RuntimeError(f"result.exception={result.exception} " f"result.output={result.output}") wait_for_condition(output_ready) result = runner.invoke(scripts.status, []) _check_output_via_pattern("test_ray_status_multinode.txt", result) ray.shutdown() cluster.shutdown()
def run_multi_nodes(): c = Cluster() c.add_node(num_cpus=4, object_store_memory=object_store_size, _system_config=system_config) ray.init(address=c.address) for _ in range(num_nodes - 1): # subtract a head node. c.add_node(num_cpus=4, object_store_memory=object_store_size) c.wait_for_nodes() # Run shuffle. print( f"\n\nTest streaming shuffle with {num_nodes} nodes.\n" f"Shuffle size: {partition_size * num_partitions / 1024 / 1024 / 1024}" "GB") run_shuffle() time.sleep(5) display_spilling_info(c.address) ray.shutdown() c.shutdown() time.sleep(5)
def test_spill_dir_cleanup_on_raylet_start(object_spilling_config): object_spilling_config, temp_folder = object_spilling_config cluster = Cluster() cluster.add_node( num_cpus=0, object_store_memory=75 * 1024 * 1024, _system_config={"object_spilling_config": object_spilling_config}, ) ray.init(address=cluster.address) node2 = cluster.add_node(num_cpus=1, object_store_memory=75 * 1024 * 1024) # This task will run on node 2 because node 1 has no CPU resource @ray.remote(num_cpus=1) def run_workload(): ids = [] for _ in range(2): arr = np.random.rand(5 * 1024 * 1024) # 40 MB ids.append(ray.put(arr)) return ids ids = ray.get(run_workload.remote()) assert not is_dir_empty(temp_folder) # Kill node 2 cluster.remove_node(node2) # Verify that the spill folder is not empty assert not is_dir_empty(temp_folder) # Start a new node cluster.add_node(num_cpus=1, object_store_memory=75 * 1024 * 1024) # Verify that the spill folder is now cleaned up assert is_dir_empty(temp_folder) # We hold the object refs to prevent them from being deleted del ids ray.shutdown() cluster.shutdown()
def main(): cluster = Cluster( initialize_head=True, connect=True, head_node_args={"object_store_memory": 20 * 1024 * 1024 * 1024, "num_cpus": 16}, ) cluster.add_node( object_store_memory=20 * 1024 * 1024 * 1024, num_gpus=1, num_cpus=16 ) object_ref_list = [] for i in range(0, 10): object_ref = ray.put(np.random.rand(1024 * 128, 1024)) object_ref_list.append(object_ref) @ray.remote(num_gpus=1) def f(object_ref_list): diffs = [] for object_ref in object_ref_list: before = time.time() ray.get(object_ref) after = time.time() diffs.append(after - before) time.sleep(1) return np.mean(diffs), np.std(diffs) time_diff, time_diff_std = ray.get(f.remote(object_ref_list)) print( "latency to get an 1G object over network", round(time_diff, 2), "+-", round(time_diff_std, 2), ) ray.shutdown() cluster.shutdown()
def test_cluster_handle_affinity(): cluster = Cluster() # HACK: using two different ip address so the placement constraint for # resource check later will work. head_node = cluster.add_node(node_ip_address="127.0.0.1", num_cpus=4) cluster.add_node(node_ip_address="0.0.0.0", num_cpus=4) ray.init(head_node.address) # Make sure we have two nodes. node_ids = [n["NodeID"] for n in ray.nodes()] assert len(node_ids) == 2 # Start the backend. client = serve.start(http_port=randint(10000, 30000), detached=True) client.create_backend("hi:v0", lambda _: "hi") client.create_endpoint("hi", backend="hi:v0") # Try to retrieve the handle from both head and worker node, check the # router's node id. @ray.remote def check_handle_router_id(): client = serve.connect() handle = client.get_handle("hi") return get_node_id_for_actor(handle.router_handle) router_node_ids = ray.get([ check_handle_router_id.options(resources={ node_id: 0.01 }).remote() for node_id in ray.state.node_ids() ]) assert set(router_node_ids) == set(node_ids) # Clean up the nodes (otherwise Ray will segfault). ray.shutdown() cluster.shutdown()
def ray_large_cluster(): try: from ray.cluster_utils import Cluster except ModuleNotFoundError: from ray._private.cluster_utils import Cluster cluster = Cluster() remote_nodes = [] num_nodes = 3 for i in range(num_nodes): remote_nodes.append(cluster.add_node(num_cpus=10)) if len(remote_nodes) == 1: ray.init(address=cluster.address) register_ray_serializers() try: yield finally: unregister_ray_serializers() Router.set_instance(None) RayServer.clear() ray.shutdown() cluster.shutdown() if 'COV_CORE_SOURCE' in os.environ: # Remove this when https://github.com/ray-project/ray/issues/16802 got fixed subprocess.check_call(["ray", "stop", "--force"])
def _ray_start_cluster(**kwargs): init_kwargs = get_default_fixture_ray_kwargs() num_nodes = 0 do_init = False # num_nodes & do_init are not arguments for ray.init, so delete them. if "num_nodes" in kwargs: num_nodes = kwargs["num_nodes"] del kwargs["num_nodes"] if "do_init" in kwargs: do_init = kwargs["do_init"] del kwargs["do_init"] elif num_nodes > 0: do_init = True init_kwargs.update(kwargs) cluster = Cluster() remote_nodes = [] for _ in range(num_nodes): remote_nodes.append(cluster.add_node(**init_kwargs)) if do_init: ray.init(address=cluster.address) yield cluster # The code after the yield will run as teardown code. ray.shutdown() cluster.shutdown()
class TrialRunnerPlacementGroupTest(unittest.TestCase): def setUp(self): os.environ["TUNE_GLOBAL_CHECKPOINT_S"] = "10000" self.head_cpus = 8 self.head_gpus = 4 self.head_custom = 16 self.cluster = Cluster(initialize_head=True, connect=True, head_node_args={ "include_dashboard": False, "num_cpus": self.head_cpus, "num_gpus": self.head_gpus, "resources": { "custom": self.head_custom }, "_system_config": { "num_heartbeats_timeout": 10 } }) # Pytest doesn't play nicely with imports _register_all() def tearDown(self): ray.shutdown() self.cluster.shutdown() _register_all() # re-register the evicted objects def _assertCleanup(self, trial_executor): # Assert proper cleanup pg_manager = trial_executor._pg_manager self.assertFalse(pg_manager._in_use_trials) self.assertFalse(pg_manager._in_use_pgs) self.assertFalse(pg_manager._staging_futures) for pgf in pg_manager._staging: self.assertFalse(pg_manager._staging[pgf]) for pgf in pg_manager._ready: self.assertFalse(pg_manager._ready[pgf]) self.assertTrue(pg_manager._latest_staging_start_time) num_non_removed_pgs = len([ p for pid, p in placement_group_table().items() if p["state"] != "REMOVED" ]) self.assertEqual(num_non_removed_pgs, 0) def testPlacementGroupRequests(self, reuse_actors=False, scheduled=10): """In this test we try to start 10 trials but only have resources for 2. Placement groups should still be created and PENDING. Eventually they should be scheduled sequentially (i.e. in pairs of two).""" def train(config): time.sleep(1) now = time.time() tune.report(end=now - config["start_time"]) head_bundle = {"CPU": 4, "GPU": 0, "custom": 0} child_bundle = {"custom": 1} placement_group_factory = PlacementGroupFactory( [head_bundle, child_bundle, child_bundle]) trial_executor = RayTrialExecutor(reuse_actors=reuse_actors) this = self class _TestCallback(Callback): def on_step_end(self, iteration, trials, **info): num_finished = len([ t for t in trials if t.status == Trial.TERMINATED or t.status == Trial.ERROR ]) num_staging = sum( len(s) for s in trial_executor._pg_manager._staging.values()) num_ready = sum( len(s) for s in trial_executor._pg_manager._ready.values()) num_in_use = len(trial_executor._pg_manager._in_use_pgs) num_cached = len(trial_executor._pg_manager._cached_pgs) total_num_tracked = num_staging + num_ready + \ num_in_use + num_cached num_non_removed_pgs = len([ p for pid, p in placement_group_table().items() if p["state"] != "REMOVED" ]) num_removal_scheduled_pgs = len( trial_executor._pg_manager._pgs_for_removal) # All trials should be scheduled this.assertEqual(scheduled, min(scheduled, len(trials)), msg=f"Num trials iter {iteration}") # The number of PGs should decrease when trials finish this.assertEqual(max(scheduled, len(trials)) - num_finished, total_num_tracked, msg=f"Num tracked iter {iteration}") # The number of actual placement groups should match this this.assertEqual(max(scheduled, len(trials)) - num_finished, num_non_removed_pgs - num_removal_scheduled_pgs, msg=f"Num actual iter {iteration}") start = time.time() out = tune.run(train, config={"start_time": start}, resources_per_trial=placement_group_factory, num_samples=10, trial_executor=trial_executor, callbacks=[_TestCallback()], reuse_actors=reuse_actors, verbose=2) trial_end_times = sorted(t.last_result["end"] for t in out.trials) print("Trial end times:", trial_end_times) max_diff = trial_end_times[-1] - trial_end_times[0] # Not all trials have been run in parallel self.assertGreater(max_diff, 3) # Some trials should have run in parallel # Todo: Re-enable when using buildkite # self.assertLess(max_diff, 10) self._assertCleanup(trial_executor) def testPlacementGroupRequestsWithActorReuse(self): """Assert that reuse actors doesn't leak placement groups""" self.testPlacementGroupRequests(reuse_actors=True) @patch("ray.tune.trial_runner.TUNE_MAX_PENDING_TRIALS_PG", 6) @patch("ray.tune.utils.placement_groups.TUNE_MAX_PENDING_TRIALS_PG", 6) def testPlacementGroupLimitedRequests(self): """Assert that maximum number of placement groups is enforced.""" self.testPlacementGroupRequests(scheduled=6) @patch("ray.tune.trial_runner.TUNE_MAX_PENDING_TRIALS_PG", 6) @patch("ray.tune.utils.placement_groups.TUNE_MAX_PENDING_TRIALS_PG", 6) def testPlacementGroupLimitedRequestsWithActorReuse(self): self.testPlacementGroupRequests(reuse_actors=True, scheduled=6) def testPlacementGroupDistributedTraining(self, reuse_actors=False): """Run distributed training using placement groups. Each trial requests 4 CPUs and starts 4 remote training workers. """ head_bundle = {"CPU": 1, "GPU": 0, "custom": 0} child_bundle = {"CPU": 1} placement_group_factory = PlacementGroupFactory( [head_bundle, child_bundle, child_bundle, child_bundle]) @ray.remote class TrainingActor: def train(self, val): time.sleep(1) return val def train(config): base = config["base"] actors = [TrainingActor.remote() for _ in range(4)] futures = [ actor.train.remote(base + 2 * i) for i, actor in enumerate(actors) ] results = ray.get(futures) end = time.time() - config["start_time"] tune.report(avg=np.mean(results), end=end) trial_executor = RayTrialExecutor(reuse_actors=reuse_actors) start = time.time() out = tune.run(train, config={ "start_time": start, "base": tune.grid_search(list(range(0, 100, 10))) }, resources_per_trial=placement_group_factory, num_samples=1, trial_executor=trial_executor, reuse_actors=reuse_actors, verbose=2) avgs = sorted(t.last_result["avg"] for t in out.trials) self.assertSequenceEqual(avgs, list(range(3, 103, 10))) trial_end_times = sorted(t.last_result["end"] for t in out.trials) print("Trial end times:", trial_end_times) max_diff = trial_end_times[-1] - trial_end_times[0] # Not all trials have been run in parallel self.assertGreater(max_diff, 3) # Some trials should have run in parallel # Todo: Re-enable when using buildkite # self.assertLess(max_diff, 10) self._assertCleanup(trial_executor) def testPlacementGroupDistributedTrainingWithActorReuse(self): self.testPlacementGroupDistributedTraining(reuse_actors=True)
def ray_cluster(): cluster = Cluster() yield Cluster() serve.shutdown() ray.shutdown() cluster.shutdown()
class RayExecutorQueueTest(unittest.TestCase): def setUp(self): self.cluster = Cluster(initialize_head=True, connect=True, head_node_args={ "num_cpus": 1, "_system_config": { "num_heartbeats_timeout": 10 } }) self.trial_executor = RayTrialExecutor(queue_trials=True, refresh_period=0) # Pytest doesn't play nicely with imports _register_all() def tearDown(self): ray.shutdown() self.cluster.shutdown() _register_all() # re-register the evicted objects def testQueueTrial(self): """Tests that reset handles NotImplemented properly.""" def create_trial(cpu, gpu=0): return Trial("__fake", resources=Resources(cpu=cpu, gpu=gpu)) cpu_only = create_trial(1, 0) self.assertTrue(self.trial_executor.has_resources_for_trial(cpu_only)) self.trial_executor.start_trial(cpu_only) gpu_only = create_trial(0, 1) self.assertTrue(self.trial_executor.has_resources_for_trial(gpu_only)) def testHeadBlocking(self): # Once resource requests are deprecated, remove this test os.environ["TUNE_PLACEMENT_GROUP_AUTO_DISABLED"] = "1" def create_trial(cpu, gpu=0): return Trial("__fake", resources=Resources(cpu=cpu, gpu=gpu)) gpu_trial = create_trial(1, 1) self.assertTrue(self.trial_executor.has_resources_for_trial(gpu_trial)) self.trial_executor.start_trial(gpu_trial) # TODO(rliaw): This behavior is probably undesirable, but right now # trials with different resource requirements is not often used. cpu_only_trial = create_trial(1, 0) self.assertFalse( self.trial_executor.has_resources_for_trial(cpu_only_trial)) self.cluster.add_node(num_cpus=1, num_gpus=1) self.cluster.wait_for_nodes() self.assertTrue( self.trial_executor.has_resources_for_trial(cpu_only_trial)) self.trial_executor.start_trial(cpu_only_trial) cpu_only_trial2 = create_trial(1, 0) self.assertTrue( self.trial_executor.has_resources_for_trial(cpu_only_trial2)) self.trial_executor.start_trial(cpu_only_trial2) cpu_only_trial3 = create_trial(1, 0) self.assertFalse( self.trial_executor.has_resources_for_trial(cpu_only_trial3))
class RayExecutorPlacementGroupTest(unittest.TestCase): def setUp(self): self.head_cpus = 8 self.head_gpus = 4 self.head_custom = 16 self.cluster = Cluster( initialize_head=True, connect=True, head_node_args={ "num_cpus": self.head_cpus, "num_gpus": self.head_gpus, "resources": {"custom": self.head_custom}, "_system_config": {"num_heartbeats_timeout": 10}, }, ) # Pytest doesn't play nicely with imports _register_all() def tearDown(self): ray.shutdown() self.cluster.shutdown() _register_all() # re-register the evicted objects def testResourcesAvailableWithPlacementGroup(self): def train(config): tune.report(metric=0, resources=ray.available_resources()) head_bundle = {"CPU": 1, "GPU": 0, "custom": 4} child_bundle = {"CPU": 2, "GPU": 1, "custom": 3} placement_group_factory = PlacementGroupFactory( [head_bundle, child_bundle, child_bundle] ) out = tune.run(train, resources_per_trial=placement_group_factory) available = { key: val for key, val in out.trials[0].last_result["resources"].items() if key in ["CPU", "GPU", "custom"] } if not available: self.skipTest( "Warning: Ray reported no available resources, " "but this is an error on the Ray core side. " "Skipping this test for now." ) self.assertDictEqual( available, { "CPU": self.head_cpus - 5.0, "GPU": self.head_gpus - 2.0, "custom": self.head_custom - 10.0, }, ) def testPlacementGroupFactoryEquality(self): """ Test that two different placement group factory objects are considered equal and evaluate to the same hash. """ from collections import Counter pgf_1 = PlacementGroupFactory( [{"CPU": 2, "GPU": 4, "custom": 7}, {"GPU": 2, "custom": 1, "CPU": 3}], "PACK", "no_name", None, ) pgf_2 = PlacementGroupFactory( [ { "custom": 7, "GPU": 4, "CPU": 2, }, {"custom": 1, "GPU": 2, "CPU": 3}, ], strategy="PACK", name="no_name", lifetime=None, ) pgf_3 = PlacementGroupFactory( [ {"custom": 7, "GPU": 4, "CPU": 2.0, "custom2": 0}, {"custom": 1.0, "GPU": 2, "CPU": 3, "custom2": 0}, ], strategy="PACK", name="no_name", lifetime=None, ) self.assertEqual(pgf_1, pgf_2) self.assertEqual(pgf_2, pgf_3) # Hash testing counter = Counter() counter[pgf_1] += 1 counter[pgf_2] += 1 counter[pgf_3] += 1 self.assertEqual(counter[pgf_1], 3) self.assertEqual(counter[pgf_2], 3) self.assertEqual(counter[pgf_3], 3) def testHasResourcesForTrialWithCaching(self): pgm = _PlacementGroupManager() pgf1 = PlacementGroupFactory([{"CPU": self.head_cpus}]) pgf2 = PlacementGroupFactory([{"CPU": self.head_cpus - 1}]) executor = RayTrialExecutor(reuse_actors=True) executor._pg_manager = pgm executor.set_max_pending_trials(1) def train(config): yield 1 yield 2 yield 3 yield 4 register_trainable("resettable", train) trial1 = Trial("resettable", placement_group_factory=pgf1) trial2 = Trial("resettable", placement_group_factory=pgf1) trial3 = Trial("resettable", placement_group_factory=pgf2) assert executor.has_resources_for_trial(trial1) assert executor.has_resources_for_trial(trial2) assert executor.has_resources_for_trial(trial3) executor._stage_and_update_status([trial1, trial2, trial3]) while not pgm.has_ready(trial1): time.sleep(1) executor._stage_and_update_status([trial1, trial2, trial3]) # Fill staging executor._stage_and_update_status([trial1, trial2, trial3]) assert executor.has_resources_for_trial(trial1) assert executor.has_resources_for_trial(trial2) assert not executor.has_resources_for_trial(trial3) executor._start_trial(trial1) executor._stage_and_update_status([trial1, trial2, trial3]) executor.pause_trial(trial1) # Caches the PG and removes a PG from staging assert len(pgm._staging_futures) == 0 # This will re-schedule a placement group pgm.reconcile_placement_groups([trial1, trial2]) assert len(pgm._staging_futures) == 1 assert not pgm.can_stage() # We should still have resources for this trial as it has a cached PG assert executor.has_resources_for_trial(trial1) assert executor.has_resources_for_trial(trial2) assert not executor.has_resources_for_trial(trial3)
def test_multiple_routers(): cluster = Cluster() head_node = cluster.add_node() cluster.add_node() ray.init(head_node.address) node_ids = ray.state.node_ids() assert len(node_ids) == 2 client = serve.start(http_port=8005) # noqa: F841 def get_proxy_names(): proxy_names = [] for node_id, _ in get_all_node_ids(): proxy_names.append( format_actor_name(SERVE_PROXY_NAME, client._controller_name, node_id)) return proxy_names wait_for_condition(lambda: len(get_proxy_names()) == 2) proxy_names = get_proxy_names() # Two actors should be started. def get_first_two_actors(): try: ray.get_actor(proxy_names[0]) ray.get_actor(proxy_names[1]) return True except ValueError: return False wait_for_condition(get_first_two_actors) # Wait for the actors to come up. ray.get(block_until_http_ready.remote("http://127.0.0.1:8005/-/routes")) # Kill one of the servers, the HTTP server should still function. ray.kill(ray.get_actor(get_proxy_names()[0]), no_restart=True) ray.get(block_until_http_ready.remote("http://127.0.0.1:8005/-/routes")) # Add a new node to the cluster. This should trigger a new router to get # started. new_node = cluster.add_node() wait_for_condition(lambda: len(get_proxy_names()) == 3) third_proxy = get_proxy_names()[2] def get_third_actor(): try: ray.get_actor(third_proxy) return True # IndexErrors covers when cluster resources aren't updated yet. except (IndexError, ValueError): return False wait_for_condition(get_third_actor) # Remove the newly-added node from the cluster. The corresponding actor # should be removed as well. cluster.remove_node(new_node) def third_actor_removed(): try: ray.get_actor(third_proxy) return False except ValueError: return True # Check that the actor is gone and the HTTP server still functions. wait_for_condition(third_actor_removed) ray.get(block_until_http_ready.remote("http://127.0.0.1:8005/-/routes")) # Clean up the nodes (otherwise Ray will segfault). ray.shutdown() cluster.shutdown()
class TrialRunnerPlacementGroupTest(unittest.TestCase): def setUp(self): os.environ["TUNE_GLOBAL_CHECKPOINT_S"] = "10000" self.head_cpus = 8 self.head_gpus = 4 self.head_custom = 16 self.cluster = Cluster(initialize_head=True, connect=True, head_node_args={ "num_cpus": self.head_cpus, "num_gpus": self.head_gpus, "resources": { "custom": self.head_custom }, "_system_config": { "num_heartbeats_timeout": 10 } }) # Pytest doesn't play nicely with imports _register_all() def tearDown(self): ray.shutdown() self.cluster.shutdown() _register_all() # re-register the evicted objects def testPlacementGroupRequests(self, scheduled=10): """In this test we try to start 10 trials but only have resources for 2. Placement groups should still be created and PENDING. Eventually they should be scheduled sequentially (i.e. in pairs of two).""" def train(config): time.sleep(1) now = time.time() tune.report(end=now - config["start_time"]) def placement_group_factory(): head_bundle = {"CPU": 4, "GPU": 0, "custom": 0} child_bundle = {"custom": 1} return placement_group([head_bundle, child_bundle, child_bundle]) trial_executor = RayTrialExecutor() this = self class _TestCallback(Callback): def on_step_end(self, iteration, trials, **info): if iteration == 1: this.assertEqual(scheduled, len(trials)) this.assertEqual( scheduled, sum( len(s) for s in trial_executor._pg_manager._staging.values()) + sum( len(s) for s in trial_executor._pg_manager._ready.values()) + len(trial_executor._pg_manager._in_use_pgs)) start = time.time() out = tune.run(train, config={"start_time": start}, resources_per_trial=placement_group_factory, num_samples=10, trial_executor=trial_executor, callbacks=[_TestCallback()]) trial_end_times = sorted(t.last_result["end"] for t in out.trials) print("Trial end times:", trial_end_times) max_diff = trial_end_times[-1] - trial_end_times[0] # Not all trials have been run in parallel self.assertGreater(max_diff, 5) # Some trials should have run in parallel self.assertLess(max_diff, 10) @patch("ray.tune.trial_runner.TUNE_MAX_PENDING_TRIALS_PG", 6) @patch("ray.tune.utils.placement_groups.TUNE_MAX_PENDING_TRIALS_PG", 6) def testPlacementGroupLimitedRequests(self): """Assert that maximum number of placement groups is enforced.""" self.testPlacementGroupRequests(scheduled=6) def testPlacementGroupDistributedTraining(self): """Run distributed training using placement groups. Each trial requests 4 CPUs and starts 4 remote training workers. """ def placement_group_factory(): head_bundle = {"CPU": 1, "GPU": 0, "custom": 0} child_bundle = {"CPU": 1} return placement_group( [head_bundle, child_bundle, child_bundle, child_bundle]) @ray.remote class TrainingActor: def train(self, val): time.sleep(1) return val def train(config): base = config["base"] actors = [TrainingActor.remote() for _ in range(4)] futures = [ actor.train.remote(base + 2 * i) for i, actor in enumerate(actors) ] results = ray.get(futures) end = time.time() - config["start_time"] tune.report(avg=np.mean(results), end=end) trial_executor = RayTrialExecutor() start = time.time() out = tune.run(train, config={ "start_time": start, "base": tune.grid_search(list(range(0, 100, 10))) }, resources_per_trial=placement_group_factory, num_samples=1, trial_executor=trial_executor) avgs = sorted(t.last_result["avg"] for t in out.trials) self.assertSequenceEqual(avgs, list(range(3, 103, 10))) trial_end_times = sorted(t.last_result["end"] for t in out.trials) print("Trial end times:", trial_end_times) max_diff = trial_end_times[-1] - trial_end_times[0] # Not all trials have been run in parallel self.assertGreater(max_diff, 5) # Some trials should have run in parallel # Todo: Re-enable when using buildkite # self.assertLess(max_diff, 10) # Assert proper cleanup pg_manager = trial_executor._pg_manager self.assertFalse(pg_manager._in_use_trials) self.assertFalse(pg_manager._in_use_pgs) self.assertFalse(pg_manager._staging_futures) for pgf in pg_manager._staging: self.assertFalse(pg_manager._staging[pgf]) for pgf in pg_manager._ready: self.assertFalse(pg_manager._ready[pgf]) self.assertTrue(pg_manager._latest_staging_start_time)
def test_shutdown(): g = Cluster(initialize_head=False) node = g.add_node() node2 = g.add_node() g.shutdown() assert not any(n.any_processes_alive() for n in [node, node2])
class RayExecutorPlacementGroupTest(unittest.TestCase): def setUp(self): self.head_cpus = 8 self.head_gpus = 4 self.head_custom = 16 self.cluster = Cluster(initialize_head=True, connect=True, head_node_args={ "num_cpus": self.head_cpus, "num_gpus": self.head_gpus, "resources": { "custom": self.head_custom }, "_system_config": { "num_heartbeats_timeout": 10 } }) # Pytest doesn't play nicely with imports _register_all() def tearDown(self): ray.shutdown() self.cluster.shutdown() _register_all() # re-register the evicted objects def testResourcesAvailableNoPlacementGroup(self): def train(config): tune.report(metric=0, resources=ray.available_resources()) out = tune.run(train, resources_per_trial={ "cpu": 1, "gpu": 1, "custom_resources": { "custom": 3 }, "extra_cpu": 3, "extra_gpu": 1, "extra_custom_resources": { "custom": 4 }, }) # Only `cpu`, `gpu`, and `custom_resources` will be "really" reserved, # the extra_* will just be internally reserved by Tune. self.assertDictEqual( { key: val for key, val in out.trials[0].last_result["resources"].items() if key in ["CPU", "GPU", "custom"] }, { "CPU": self.head_cpus - 1.0, "GPU": self.head_gpus - 1.0, "custom": self.head_custom - 3.0 }) def testResourcesAvailableWithPlacementGroup(self): def train(config): tune.report(metric=0, resources=ray.available_resources()) def placement_group_factory(): head_bundle = {"CPU": 1, "GPU": 0, "custom": 4} child_bundle = {"CPU": 2, "GPU": 1, "custom": 3} return placement_group([head_bundle, child_bundle, child_bundle]) out = tune.run(train, resources_per_trial=placement_group_factory) self.assertDictEqual( { key: val for key, val in out.trials[0].last_result["resources"].items() if key in ["CPU", "GPU", "custom"] }, { "CPU": self.head_cpus - 5.0, "GPU": self.head_gpus - 2.0, "custom": self.head_custom - 10.0 })
class RayExecutorPlacementGroupTest(unittest.TestCase): def setUp(self): self.head_cpus = 8 self.head_gpus = 4 self.head_custom = 16 self.cluster = Cluster( initialize_head=True, connect=True, head_node_args={ "num_cpus": self.head_cpus, "num_gpus": self.head_gpus, "resources": { "custom": self.head_custom }, "_system_config": { "num_heartbeats_timeout": 10 }, }, ) # Pytest doesn't play nicely with imports _register_all() def tearDown(self): ray.shutdown() self.cluster.shutdown() _register_all() # re-register the evicted objects def testResourcesAvailableWithPlacementGroup(self): def train(config): tune.report(metric=0, resources=ray.available_resources()) head_bundle = {"CPU": 1, "GPU": 0, "custom": 4} child_bundle = {"CPU": 2, "GPU": 1, "custom": 3} placement_group_factory = PlacementGroupFactory( [head_bundle, child_bundle, child_bundle]) out = tune.run(train, resources_per_trial=placement_group_factory) available = { key: val for key, val in out.trials[0].last_result["resources"].items() if key in ["CPU", "GPU", "custom"] } if not available: self.skipTest("Warning: Ray reported no available resources, " "but this is an error on the Ray core side. " "Skipping this test for now.") self.assertDictEqual( available, { "CPU": self.head_cpus - 5.0, "GPU": self.head_gpus - 2.0, "custom": self.head_custom - 10.0, }, ) def testPlacementGroupFactoryEquality(self): """ Test that two different placement group factory objects are considered equal and evaluate to the same hash. """ from collections import Counter pgf_1 = PlacementGroupFactory( [{ "CPU": 2, "GPU": 4, "custom": 7 }, { "GPU": 2, "custom": 1, "CPU": 3 }], "PACK", "no_name", None, ) pgf_2 = PlacementGroupFactory( [ { "custom": 7, "GPU": 4, "CPU": 2, }, { "custom": 1, "GPU": 2, "CPU": 3 }, ], strategy="PACK", name="no_name", lifetime=None, ) pgf_3 = PlacementGroupFactory( [ { "custom": 7, "GPU": 4, "CPU": 2.0, "custom2": 0 }, { "custom": 1.0, "GPU": 2, "CPU": 3, "custom2": 0 }, ], strategy="PACK", name="no_name", lifetime=None, ) self.assertEqual(pgf_1, pgf_2) self.assertEqual(pgf_2, pgf_3) # Hash testing counter = Counter() counter[pgf_1] += 1 counter[pgf_2] += 1 counter[pgf_3] += 1 self.assertEqual(counter[pgf_1], 3) self.assertEqual(counter[pgf_2], 3) self.assertEqual(counter[pgf_3], 3)
def test_multiple_routers(): cluster = Cluster() head_node = cluster.add_node() cluster.add_node() ray.init(head_node.address) node_ids = ray.state.node_ids() assert len(node_ids) == 2 serve.init(http_port=8005) def actor_name(index): return SERVE_PROXY_NAME + "-{}-{}".format(node_ids[0], index) # Two actors should be started. def get_first_two_actors(): try: ray.get_actor(actor_name(0)) ray.get_actor(actor_name(1)) return True except ValueError: return False wait_for_condition(get_first_two_actors) # Wait for the actors to come up. ray.get(block_until_http_ready.remote("http://127.0.0.1:8005/-/routes")) # Kill one of the servers, the HTTP server should still function. ray.kill(ray.get_actor(actor_name(0)), no_restart=True) ray.get(block_until_http_ready.remote("http://127.0.0.1:8005/-/routes")) # Add a new node to the cluster. This should trigger a new router to get # started. new_node = cluster.add_node() def get_third_actor(): try: ray.get_actor(actor_name(2)) return True except ValueError: return False wait_for_condition(get_third_actor) # Remove the newly-added node from the cluster. The corresponding actor # should be removed as well. cluster.remove_node(new_node) def third_actor_removed(): try: ray.get_actor(actor_name(2)) return False except ValueError: return True # Check that the actor is gone and the HTTP server still functions. wait_for_condition(third_actor_removed) ray.get(block_until_http_ready.remote("http://127.0.0.1:8005/-/routes")) # Clean up the nodes (otherwise Ray will segfault). ray.shutdown() cluster.shutdown()