예제 #1
0
def test_train(ray_start_2_cpus, num_replicas):  # noqa: F811
    trainer = PyTorchTrainer(model_creator,
                             data_creator,
                             optimizer_creator,
                             num_replicas=num_replicas)
    train_loss1 = trainer.train()["train_loss"]
    validation_loss1 = trainer.validate()["validation_loss"]

    train_loss2 = trainer.train()["train_loss"]
    validation_loss2 = trainer.validate()["validation_loss"]

    print(train_loss1, train_loss2)
    print(validation_loss1, validation_loss2)

    assert train_loss2 <= train_loss1
    assert validation_loss2 <= validation_loss1
예제 #2
0
def train_example(num_replicas=1,
                  num_epochs=5,
                  use_gpu=False,
                  use_fp16=False,
                  test_mode=False):
    config = {TEST_MODE: test_mode}
    trainer1 = PyTorchTrainer(ResNet18,
                              cifar_creator,
                              optimizer_creator,
                              nn.CrossEntropyLoss,
                              scheduler_creator=scheduler_creator,
                              initialization_hook=initialization_hook,
                              num_replicas=num_replicas,
                              config=config,
                              use_gpu=use_gpu,
                              batch_size=16 if test_mode else 512,
                              backend="nccl" if use_gpu else "gloo",
                              scheduler_step_freq="epoch",
                              use_fp16=use_fp16)
    for i in range(num_epochs):
        # Increase `max_retries` to turn on fault tolerance.
        stats = trainer1.train(max_retries=0)
        print(stats)

    print(trainer1.validate())
    trainer1.shutdown()
    print("success!")
예제 #3
0
파일: test_pytorch.py 프로젝트: kseager/ray
def test_train(ray_start_2_cpus, num_replicas):  # noqa: F811
    trainer = PyTorchTrainer(
        model_creator,
        data_creator,
        optimizer_creator,
        loss_creator=lambda config: nn.MSELoss(),
        num_replicas=num_replicas)
    for i in range(3):
        train_loss1 = trainer.train()["train_loss"]
    validation_loss1 = trainer.validate()["validation_loss"]

    for i in range(3):
        train_loss2 = trainer.train()["train_loss"]
    validation_loss2 = trainer.validate()["validation_loss"]

    print(train_loss1, train_loss2)
    print(validation_loss1, validation_loss2)

    assert train_loss2 <= train_loss1
    assert validation_loss2 <= validation_loss1
예제 #4
0
파일: test_pytorch.py 프로젝트: kseager/ray
def test_test_mode(ray_start_2_cpus):  # noqa: F811
    trainer = PyTorchTrainer(
        model_creator,
        data_creator,
        optimizer_creator,
        loss_creator=lambda config: nn.MSELoss(),
        config={TEST_MODE: True},
        num_replicas=1)
    metrics = trainer.train()
    assert metrics[BATCH_COUNT] == 1

    val_metrics = trainer.validate()
    assert val_metrics[BATCH_COUNT] == 1
def train_example(num_replicas=1, use_gpu=False, test_mode=False):
    config = {"test_mode": test_mode}
    trainer1 = PyTorchTrainer(ResNet18,
                              cifar_creator,
                              optimizer_creator,
                              nn.CrossEntropyLoss,
                              initialization_hook=initialization_hook,
                              train_function=train,
                              validation_function=validate,
                              num_replicas=num_replicas,
                              config=config,
                              use_gpu=use_gpu,
                              batch_size=16 if test_mode else 512,
                              backend="nccl" if use_gpu else "gloo")
    for i in range(5):
        stats = trainer1.train()
        print(stats)

    print(trainer1.validate())
    trainer1.shutdown()
    print("success!")