def test_marwil_compilation_and_learning_from_offline_file(self): """Test whether a MARWILTrainer can be built with all frameworks. Learns from a historic-data file. To generate this data, first run: $ ./train.py --run=PPO --env=CartPole-v0 \ --stop='{"timesteps_total": 50000}' \ --config='{"output": "/tmp/out", "batch_mode": "complete_episodes"}' """ rllib_dir = Path(__file__).parent.parent.parent.parent print("rllib dir={}".format(rllib_dir)) data_file = os.path.join(rllib_dir, "tests/data/cartpole/large.json") print("data_file={} exists={}".format(data_file, os.path.isfile(data_file))) config = ( marwil.MARWILConfig() .rollouts(num_rollout_workers=2) .environment(env="CartPole-v0") .evaluation( evaluation_interval=3, evaluation_num_workers=1, evaluation_duration=5, evaluation_parallel_to_training=True, evaluation_config={"input": "sampler"}, ) .offline_data(input_=[data_file]) ) num_iterations = 350 min_reward = 70.0 # Test for all frameworks. for _ in framework_iterator(config, frameworks=("tf", "torch")): trainer = marwil.MARWILTrainer(config=config) learnt = False for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) eval_results = results.get("evaluation") if eval_results: print( "iter={} R={} ".format(i, eval_results["episode_reward_mean"]) ) # Learn until some reward is reached on an actual live env. if eval_results["episode_reward_mean"] > min_reward: print("learnt!") learnt = True break if not learnt: raise ValueError( "MARWILTrainer did not reach {} reward from expert " "offline data!".format(min_reward) ) check_compute_single_action(trainer, include_prev_action_reward=True) trainer.stop()
def test_marwil_cont_actions_from_offline_file(self): """Test whether MARWILTrainer runs with cont. actions. Learns from a historic-data file. To generate this data, first run: $ ./train.py --run=PPO --env=Pendulum-v1 \ --stop='{"timesteps_total": 50000}' \ --config='{"output": "/tmp/out", "batch_mode": "complete_episodes"}' """ rllib_dir = Path(__file__).parent.parent.parent.parent print("rllib dir={}".format(rllib_dir)) data_file = os.path.join(rllib_dir, "tests/data/pendulum/large.json") print("data_file={} exists={}".format(data_file, os.path.isfile(data_file))) config = ( marwil.MARWILConfig().rollouts(num_rollout_workers=1).evaluation( evaluation_num_workers=1, evaluation_interval=3, evaluation_duration=5, evaluation_parallel_to_training=True, # Evaluate on actual environment. evaluation_config={ "input": "sampler" }, ).offline_data( # Learn from offline data. input_=[data_file], off_policy_estimation_methods=[], )) num_iterations = 3 # Test for all frameworks. for _ in framework_iterator(config, frameworks=("tf", "torch")): trainer = config.build(env="Pendulum-v1") for i in range(num_iterations): print(trainer.train()) trainer.stop()
def test_marwil_loss_function(self): """ To generate the historic data used in this test case, first run: $ ./train.py --run=PPO --env=CartPole-v0 \ --stop='{"timesteps_total": 50000}' \ --config='{"output": "/tmp/out", "batch_mode": "complete_episodes"}' """ rllib_dir = Path(__file__).parent.parent.parent.parent print("rllib dir={}".format(rllib_dir)) data_file = os.path.join(rllib_dir, "tests/data/cartpole/small.json") print("data_file={} exists={}".format(data_file, os.path.isfile(data_file))) config = (marwil.MARWILConfig().rollouts( num_rollout_workers=0).offline_data(input_=[data_file]) ) # Learn from offline data. for fw, sess in framework_iterator(config, session=True): reader = JsonReader(inputs=[data_file]) batch = reader.next() trainer = config.build(env="CartPole-v0") policy = trainer.get_policy() model = policy.model # Calculate our own expected values (to then compare against the # agent's loss output). cummulative_rewards = compute_advantages(batch, 0.0, config.gamma, 1.0, False, False)["advantages"] if fw == "torch": cummulative_rewards = torch.tensor(cummulative_rewards) if fw != "tf": batch = policy._lazy_tensor_dict(batch) model_out, _ = model(batch) vf_estimates = model.value_function() if fw == "tf": model_out, vf_estimates = policy.get_session().run( [model_out, vf_estimates]) adv = cummulative_rewards - vf_estimates if fw == "torch": adv = adv.detach().cpu().numpy() adv_squared = np.mean(np.square(adv)) c_2 = 100.0 + 1e-8 * (adv_squared - 100.0) c = np.sqrt(c_2) exp_advs = np.exp(config.beta * (adv / c)) dist = policy.dist_class(model_out, model) logp = dist.logp(batch["actions"]) if fw == "torch": logp = logp.detach().cpu().numpy() elif fw == "tf": logp = sess.run(logp) # Calculate all expected loss components. expected_vf_loss = 0.5 * adv_squared expected_pol_loss = -1.0 * np.mean(exp_advs * logp) expected_loss = expected_pol_loss + config.vf_coeff * expected_vf_loss # Calculate the algorithm's loss (to check against our own # calculation above). batch.set_get_interceptor(None) postprocessed_batch = policy.postprocess_trajectory(batch) loss_func = (MARWILTF2Policy.loss if fw != "torch" else MARWILTorchPolicy.loss) if fw != "tf": policy._lazy_tensor_dict(postprocessed_batch) loss_out = loss_func(policy, model, policy.dist_class, postprocessed_batch) else: loss_out, v_loss, p_loss = policy.get_session().run( # policy._loss is create by TFPolicy, and is basically the # loss tensor of the static graph. [ policy._loss, policy._marwil_loss.v_loss, policy._marwil_loss.p_loss, ], feed_dict=policy._get_loss_inputs_dict(postprocessed_batch, shuffle=False), ) # Check all components. if fw == "torch": check(policy.v_loss, expected_vf_loss, decimals=4) check(policy.p_loss, expected_pol_loss, decimals=4) elif fw == "tf": check(v_loss, expected_vf_loss, decimals=4) check(p_loss, expected_pol_loss, decimals=4) else: check(policy._marwil_loss.v_loss, expected_vf_loss, decimals=4) check(policy._marwil_loss.p_loss, expected_pol_loss, decimals=4) check(loss_out, expected_loss, decimals=3)
def _import_marwil(): import ray.rllib.algorithms.marwil as marwil return marwil.MARWIL, marwil.MARWILConfig().to_dict()