def execution_plan(workers: WorkerSet, config: TrainerConfigDict) -> LocalIterator[dict]: rollouts = ParallelRollouts(workers, mode="async") # Collect batches for the trainable policies. rollouts = rollouts.for_each( SelectExperiences(workers.trainable_policies())) # Return training metrics. return StandardMetricsReporting(rollouts, workers, config)
def execution_plan(workers: WorkerSet, config: TrainerConfigDict) -> LocalIterator[dict]: """Execution plan of the PPO algorithm. Defines the distributed dataflow. Args: workers (WorkerSet): The WorkerSet for training the Polic(y/ies) of the Trainer. config (TrainerConfigDict): The trainer's configuration dict. Returns: LocalIterator[dict]: The Policy class to use with PPOTrainer. If None, use `default_policy` provided in build_trainer(). """ rollouts = ParallelRollouts(workers, mode="bulk_sync") # Collect batches for the trainable policies. rollouts = rollouts.for_each( SelectExperiences(workers.trainable_policies())) # Concatenate the SampleBatches into one. rollouts = rollouts.combine( ConcatBatches( min_batch_size=config["train_batch_size"], count_steps_by=config["multiagent"]["count_steps_by"], )) # Standardize advantages. rollouts = rollouts.for_each(StandardizeFields(["advantages"])) # Perform one training step on the combined + standardized batch. if config["simple_optimizer"]: train_op = rollouts.for_each( TrainOneStep( workers, num_sgd_iter=config["num_sgd_iter"], sgd_minibatch_size=config["sgd_minibatch_size"])) else: train_op = rollouts.for_each( TrainTFMultiGPU( workers, sgd_minibatch_size=config["sgd_minibatch_size"], num_sgd_iter=config["num_sgd_iter"], num_gpus=config["num_gpus"], rollout_fragment_length=config["rollout_fragment_length"], num_envs_per_worker=config["num_envs_per_worker"], train_batch_size=config["train_batch_size"], shuffle_sequences=config["shuffle_sequences"], _fake_gpus=config["_fake_gpus"], framework=config.get("framework"))) # Update KL after each round of training. train_op = train_op.for_each(lambda t: t[1]).for_each(UpdateKL(workers)) # Warn about bad reward scales and return training metrics. return StandardMetricsReporting(train_op, workers, config) \ .for_each(lambda result: warn_about_bad_reward_scales(config, result))
def execution_plan(workers: WorkerSet, config: TrainerConfigDict, **kwargs) -> LocalIterator[dict]: assert len(kwargs) == 0, ( "PPO execution_plan does NOT take any additional parameters") rollouts = ParallelRollouts(workers, mode="bulk_sync") # Collect batches for the trainable policies. rollouts = rollouts.for_each( SelectExperiences(workers.trainable_policies())) # Concatenate the SampleBatches into one. rollouts = rollouts.combine( ConcatBatches( min_batch_size=config["train_batch_size"], count_steps_by=config["multiagent"]["count_steps_by"], )) # Standardize advantages. rollouts = rollouts.for_each(StandardizeFields(["advantages"])) # Perform one training step on the combined + standardized batch. if config["simple_optimizer"]: train_op = rollouts.for_each( TrainOneStep(workers, num_sgd_iter=config["num_sgd_iter"], sgd_minibatch_size=config["sgd_minibatch_size"])) else: train_op = rollouts.for_each( MultiGPUTrainOneStep( workers=workers, sgd_minibatch_size=config["sgd_minibatch_size"], num_sgd_iter=config["num_sgd_iter"], num_gpus=config["num_gpus"], shuffle_sequences=config["shuffle_sequences"], _fake_gpus=config["_fake_gpus"], framework=config.get("framework"))) # Update KL after each round of training. train_op = train_op.for_each(lambda t: t[1]).for_each( UpdateKL(workers)) # Warn about bad reward scales and return training metrics. return StandardMetricsReporting(train_op, workers, config) \ .for_each(lambda result: warn_about_bad_reward_scales( config, result))