obs_dict = {self.i: self.last_obs[self.i]} self.i = (self.i + 1) % self.num return obs_dict def step(self, action_dict): assert len(self.dones) != len(self.agents) for i, action in action_dict.items(): ( self.last_obs[i], self.last_rew[i], self.last_done[i], self.last_info[i], ) = self.agents[i].step(action) obs = {self.i: self.last_obs[self.i]} rew = {self.i: self.last_rew[self.i]} done = {self.i: self.last_done[self.i]} info = {self.i: self.last_info[self.i]} if done[self.i]: rew[self.i] = 0 self.dones.add(self.i) self.i = (self.i + 1) % self.num done["__all__"] = len(self.dones) == len(self.agents) return obs, rew, done, info MultiAgentCartPole = make_multi_agent("CartPole-v0") MultiAgentMountainCar = make_multi_agent("MountainCarContinuous-v0") MultiAgentPendulum = make_multi_agent("Pendulum-v1") MultiAgentStatelessCartPole = make_multi_agent( lambda config: StatelessCartPole(config))
parser.add_argument("--framework", choices=["tf", "torch"], default="tf") parser.add_argument("--as-test", action="store_true") parser.add_argument("--stop-iters", type=int, default=200) parser.add_argument("--stop-timesteps", type=int, default=500000) parser.add_argument("--stop-reward", type=float, default=80) if __name__ == "__main__": args = parser.parse_args() ray.init(num_cpus=args.num_cpus or None) registry.register_env("RepeatAfterMeEnv", lambda c: RepeatAfterMeEnv(c)) registry.register_env("RepeatInitialObsEnv", lambda _: RepeatInitialObsEnv()) registry.register_env("LookAndPush", lambda _: OneHot(LookAndPush())) registry.register_env("StatelessCartPole", lambda _: StatelessCartPole()) config = { "env": args.env, # This env_config is only used for the RepeatAfterMeEnv env. "env_config": { "repeat_delay": 2, }, "gamma": 0.99, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", 0)), "num_workers": 0, "num_envs_per_worker": 20, "entropy_coeff": 0.001, "num_sgd_iter": 10, "vf_loss_coeff": 1e-5,
parser.add_argument("--framework", choices=["tf2", "tf", "tfe", "torch"], default="tf") parser.add_argument("--as-test", action="store_true") parser.add_argument("--stop-iters", type=int, default=50) parser.add_argument("--stop-timesteps", type=int, default=200000) parser.add_argument("--stop-reward", type=float, default=150.0) if __name__ == "__main__": args = parser.parse_args() ray.init(num_cpus=3) ModelCatalog.register_custom_model( "frame_stack_model", FrameStackingCartPoleModel if args.framework != "torch" else TorchFrameStackingCartPoleModel) tune.register_env("stateless_cartpole", lambda c: StatelessCartPole()) config = { "env": "stateless_cartpole", "model": { "vf_share_layers": True, "custom_model": "frame_stack_model", "custom_model_config": { "num_frames": 16, }, # To compare against a simple LSTM: # "use_lstm": True, # "lstm_use_prev_action": True, # "lstm_use_prev_reward": True,
results = tune.run( args.run, config=config, stop=stop, verbose=2, checkpoint_at_end=True) if args.as_test: check_learning_achieved(results, args.stop_reward) checkpoints = results.get_trial_checkpoints_paths( trial=results.get_best_trial("episode_reward_mean", mode="max"), metric="episode_reward_mean") checkpoint_path = checkpoints[0][0] trainer = PPOTrainer(config) trainer.restore(checkpoint_path) # Inference loop. env = StatelessCartPole() # Run manual inference loop for n episodes. for _ in range(10): episode_reward = 0.0 reward = 0.0 action = 0 done = False obs = env.reset() while not done: # Create a dummy action using the same observation n times, # as well as dummy prev-n-actions and prev-n-rewards. action, state, logits = trainer.compute_single_action( input_dict={ "obs": obs, "prev_n_obs": np.stack([obs for _ in range(num_frames)]),
self.last_info[i] = {} obs_dict = {self.i: self.last_obs[self.i]} self.i = (self.i + 1) % self.num return obs_dict def step(self, action_dict): assert len(self.dones) != len(self.agents) for i, action in action_dict.items(): ( self.last_obs[i], self.last_rew[i], self.last_done[i], self.last_info[i], ) = self.agents[i].step(action) obs = {self.i: self.last_obs[self.i]} rew = {self.i: self.last_rew[self.i]} done = {self.i: self.last_done[self.i]} info = {self.i: self.last_info[self.i]} if done[self.i]: rew[self.i] = 0 self.dones.add(self.i) self.i = (self.i + 1) % self.num done["__all__"] = len(self.dones) == len(self.agents) return obs, rew, done, info MultiAgentCartPole = make_multi_agent("CartPole-v0") MultiAgentMountainCar = make_multi_agent("MountainCarContinuous-v0") MultiAgentPendulum = make_multi_agent("Pendulum-v1") MultiAgentStatelessCartPole = make_multi_agent(lambda config: StatelessCartPole(config))