예제 #1
0
def execution_plan(workers, config):
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    if config["simple_optimizer"]:
        train_op = rollouts \
            .combine(ConcatBatches(
                min_batch_size=config["train_batch_size"])) \
            .for_each(TrainOneStep(
                workers, num_sgd_iter=config["num_sgd_iter"]))
    else:
        replay_buffer = SimpleReplayBuffer(config["buffer_size"])

        store_op = rollouts \
            .for_each(StoreToReplayBuffer(local_buffer=replay_buffer))

        replay_op = Replay(local_buffer=replay_buffer) \
            .filter(WaitUntilTimestepsElapsed(config["learning_starts"])) \
            .combine(
                ConcatBatches(min_batch_size=config["train_batch_size"])) \
            .for_each(TrainOneStep(
                workers, num_sgd_iter=config["num_sgd_iter"]))

        train_op = Concurrently(
            [store_op, replay_op], mode="round_robin", output_indexes=[1])

    return StandardMetricsReporting(train_op, workers, config)
예제 #2
0
def execution_plan_nfsp(workers, config):
    # 1. define buffers
    replay_size = config["replay_buffer_size"]
    reservoir_size = config["reservoir_buffer_size"]
    replay_buffers = MultiAgentSimpleReplayBuffer(
        replay_size, config["multiagent"]["policies"])
    reservoir_buffers = MultiAgentReservoirBuffer(
        reservoir_size, config["multiagent"]["policies"])
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    # 2. define store operations
    store_op = rollouts.for_each(
        StoreToBuffers(replay_buffers, reservoir_buffers,
                       config['multiagent']['policies_to_train']))  # Sampling

    # 3. define replay/reservoir operations
    replay_op = SimpleLocalReplayMultiagent(replay_buffers, config["replay_train_batch_size"],
                                      config["replay_min_size_to_learn"],
                                      config["replay_train_every"]) \
        .for_each(TrainOneStep(workers))\
        .for_each(UpdateTargetNetwork(workers, config['dqn_policy']["target_network_update_freq"]))

    reservoir_op = LocalReservoirMultiagent(reservoir_buffers, config["reservoir_train_batch_size"],
                                            config["reservoir_min_size_to_learn"],
                                            config["reservoir_train_every"])\
        .for_each(TrainOneStep(workers))

    # 4. define main train loop
    train_op = Concurrently([replay_op, reservoir_op, store_op],
                            mode="round_robin")
    return LowMemoryMetricsReporting(train_op, workers, config)
예제 #3
0
def execution_plan(workers, config, **kwargs):
    assert len(kwargs) == 0, (
        "Alpha zero execution_plan does NOT take any additional parameters")

    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    if config["simple_optimizer"]:
        train_op = rollouts.combine(
            ConcatBatches(
                min_batch_size=config["train_batch_size"],
                count_steps_by=config["multiagent"]["count_steps_by"],
            )).for_each(
                TrainOneStep(workers, num_sgd_iter=config["num_sgd_iter"]))
    else:
        replay_buffer = SimpleReplayBuffer(config["buffer_size"])

        store_op = rollouts \
            .for_each(StoreToReplayBuffer(local_buffer=replay_buffer))

        replay_op = Replay(local_buffer=replay_buffer) \
            .filter(WaitUntilTimestepsElapsed(config["learning_starts"])) \
            .combine(
            ConcatBatches(
                min_batch_size=config["train_batch_size"],
                count_steps_by=config["multiagent"]["count_steps_by"],
            )) \
            .for_each(TrainOneStep(
                workers, num_sgd_iter=config["num_sgd_iter"]))

        train_op = Concurrently(
            [store_op, replay_op], mode="round_robin", output_indexes=[1])

    return StandardMetricsReporting(train_op, workers, config)
예제 #4
0
def custom_training_workflow(workers: WorkerSet, config: dict):
    local_replay_buffer = LocalReplayBuffer(num_shards=1,
                                            learning_starts=1000,
                                            buffer_size=50000,
                                            replay_batch_size=64)

    def add_ppo_metrics(batch):
        print("PPO policy learning on samples from",
              batch.policy_batches.keys(), "env steps", batch.env_steps(),
              "agent steps", batch.env_steps())
        metrics = _get_shared_metrics()
        metrics.counters["agent_steps_trained_PPO"] += batch.env_steps()
        return batch

    def add_dqn_metrics(batch):
        print("DQN policy learning on samples from",
              batch.policy_batches.keys(), "env steps", batch.env_steps(),
              "agent steps", batch.env_steps())
        metrics = _get_shared_metrics()
        metrics.counters["agent_steps_trained_DQN"] += batch.env_steps()
        return batch

    # Generate common experiences.
    rollouts = ParallelRollouts(workers, mode="bulk_sync")
    r1, r2 = rollouts.duplicate(n=2)

    # DQN sub-flow.
    dqn_store_op = r1.for_each(SelectExperiences(["dqn_policy"])) \
        .for_each(
            StoreToReplayBuffer(local_buffer=local_replay_buffer))
    dqn_replay_op = Replay(local_buffer=local_replay_buffer) \
        .for_each(add_dqn_metrics) \
        .for_each(TrainOneStep(workers, policies=["dqn_policy"])) \
        .for_each(UpdateTargetNetwork(
            workers, target_update_freq=500, policies=["dqn_policy"]))
    dqn_train_op = Concurrently([dqn_store_op, dqn_replay_op],
                                mode="round_robin",
                                output_indexes=[1])

    # PPO sub-flow.
    ppo_train_op = r2.for_each(SelectExperiences(["ppo_policy"])) \
        .combine(ConcatBatches(
            min_batch_size=200, count_steps_by="env_steps")) \
        .for_each(add_ppo_metrics) \
        .for_each(StandardizeFields(["advantages"])) \
        .for_each(TrainOneStep(
            workers,
            policies=["ppo_policy"],
            num_sgd_iter=10,
            sgd_minibatch_size=128))

    # Combined training flow
    train_op = Concurrently([ppo_train_op, dqn_train_op],
                            mode="async",
                            output_indexes=[1])

    return StandardMetricsReporting(train_op, workers, config)
예제 #5
0
파일: marwil.py 프로젝트: yncxcw/ray
def execution_plan(workers: WorkerSet,
                   config: TrainerConfigDict) -> LocalIterator[dict]:
    """Execution plan of the MARWIL/BC algorithm. Defines the distributed
    dataflow.

    Args:
        workers (WorkerSet): The WorkerSet for training the Polic(y/ies)
            of the Trainer.
        config (TrainerConfigDict): The trainer's configuration dict.

    Returns:
        LocalIterator[dict]: A local iterator over training metrics.
    """
    rollouts = ParallelRollouts(workers, mode="bulk_sync")
    replay_buffer = SimpleReplayBuffer(config["replay_buffer_size"])

    store_op = rollouts \
        .for_each(StoreToReplayBuffer(local_buffer=replay_buffer))

    replay_op = Replay(local_buffer=replay_buffer) \
        .combine(
            ConcatBatches(
                min_batch_size=config["train_batch_size"],
                count_steps_by=config["multiagent"]["count_steps_by"],
            )) \
        .for_each(TrainOneStep(workers))

    train_op = Concurrently([store_op, replay_op],
                            mode="round_robin",
                            output_indexes=[1])

    return StandardMetricsReporting(train_op, workers, config)
예제 #6
0
    def execution_plan(workers, config, **kwargs):
        assert "local_replay_buffer" in kwargs, (
            "GenericOffPolicy execution plan requires a local replay buffer.")

        local_replay_buffer = kwargs["local_replay_buffer"]

        rollouts = ParallelRollouts(workers, mode="bulk_sync")

        # (1) Generate rollouts and store them in our local replay buffer.
        store_op = rollouts.for_each(
            StoreToReplayBuffer(local_buffer=local_replay_buffer))

        if config["simple_optimizer"]:
            train_step_op = TrainOneStep(workers)
        else:
            train_step_op = MultiGPUTrainOneStep(
                workers=workers,
                sgd_minibatch_size=config["train_batch_size"],
                num_sgd_iter=1,
                num_gpus=config["num_gpus"],
                _fake_gpus=config["_fake_gpus"])

        # (2) Read and train on experiences from the replay buffer.
        replay_op = Replay(local_buffer=local_replay_buffer) \
            .for_each(train_step_op) \
            .for_each(UpdateTargetNetwork(
                workers, config["target_network_update_freq"]))

        # Alternate deterministically between (1) and (2).
        train_op = Concurrently([store_op, replay_op],
                                mode="round_robin",
                                output_indexes=[1])

        return StandardMetricsReporting(train_op, workers, config)
예제 #7
0
파일: slateq.py 프로젝트: wuisawesome/ray
    def execution_plan(workers: WorkerSet, config: TrainerConfigDict,
                       **kwargs) -> LocalIterator[dict]:
        assert (
            "local_replay_buffer"
            in kwargs), "SlateQ execution plan requires a local replay buffer."

        rollouts = ParallelRollouts(workers, mode="bulk_sync")

        # We execute the following steps concurrently:
        # (1) Generate rollouts and store them in our local replay buffer.
        # Calling next() on store_op drives this.
        store_op = rollouts.for_each(
            StoreToReplayBuffer(local_buffer=kwargs["local_replay_buffer"]))

        # (2) Read and train on experiences from the replay buffer. Every batch
        # returned from the LocalReplay() iterator is passed to TrainOneStep to
        # take a SGD step.
        replay_op = (Replay(
            local_buffer=kwargs["local_replay_buffer"]).for_each(
                TrainOneStep(workers)).for_each(
                    UpdateTargetNetwork(workers,
                                        config["target_network_update_freq"])))

        # Alternate deterministically between (1) and (2). Only return the
        # output of (2) since training metrics are not available until (2)
        # runs.
        train_op = Concurrently(
            [store_op, replay_op],
            mode="round_robin",
            output_indexes=[1],
            round_robin_weights=calculate_round_robin_weights(config),
        )

        return StandardMetricsReporting(train_op, workers, config)
예제 #8
0
파일: qmix.py 프로젝트: wuisawesome/ray
    def execution_plan(
        workers: WorkerSet, config: TrainerConfigDict, **kwargs
    ) -> LocalIterator[dict]:
        assert (
            len(kwargs) == 0
        ), "QMIX execution_plan does NOT take any additional parameters"

        rollouts = ParallelRollouts(workers, mode="bulk_sync")
        replay_buffer = SimpleReplayBuffer(config["buffer_size"])

        store_op = rollouts.for_each(StoreToReplayBuffer(local_buffer=replay_buffer))

        train_op = (
            Replay(local_buffer=replay_buffer)
            .combine(
                ConcatBatches(
                    min_batch_size=config["train_batch_size"],
                    count_steps_by=config["multiagent"]["count_steps_by"],
                )
            )
            .for_each(TrainOneStep(workers))
            .for_each(
                UpdateTargetNetwork(workers, config["target_network_update_freq"])
            )
        )

        merged_op = Concurrently(
            [store_op, train_op], mode="round_robin", output_indexes=[1]
        )

        return StandardMetricsReporting(merged_op, workers, config)
예제 #9
0
def default_execution_plan(workers: WorkerSet, config: TrainerConfigDict):
    # Collects experiences in parallel from multiple RolloutWorker actors.
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    # Combine experiences batches until we hit `train_batch_size` in size.
    # Then, train the policy on those experiences and update the workers.
    train_op = rollouts.combine(
        ConcatBatches(
            min_batch_size=config["train_batch_size"],
            count_steps_by=config["multiagent"]["count_steps_by"],
        ))

    if config.get("simple_optimizer") is True:
        train_op = train_op.for_each(TrainOneStep(workers))
    else:
        train_op = train_op.for_each(
            MultiGPUTrainOneStep(
                workers=workers,
                sgd_minibatch_size=config.get("sgd_minibatch_size",
                                              config["train_batch_size"]),
                num_sgd_iter=config.get("num_sgd_iter", 1),
                num_gpus=config["num_gpus"],
                shuffle_sequences=config.get("shuffle_sequences", False),
                _fake_gpus=config["_fake_gpus"],
                framework=config["framework"]))

    # Add on the standard episode reward, etc. metrics reporting. This returns
    # a LocalIterator[metrics_dict] representing metrics for each train step.
    return StandardMetricsReporting(train_op, workers, config)
예제 #10
0
    def execution_plan(workers: WorkerSet, config: TrainerConfigDict,
                       **kwargs) -> LocalIterator[dict]:
        assert len(kwargs) == 0, (
            "Marwill execution_plan does NOT take any additional parameters")

        rollouts = ParallelRollouts(workers, mode="bulk_sync")
        replay_buffer = MultiAgentReplayBuffer(
            learning_starts=config["learning_starts"],
            capacity=config["replay_buffer_size"],
            replay_batch_size=config["train_batch_size"],
            replay_sequence_length=1,
        )

        store_op = rollouts \
            .for_each(StoreToReplayBuffer(local_buffer=replay_buffer))

        replay_op = Replay(local_buffer=replay_buffer) \
            .combine(
            ConcatBatches(
                min_batch_size=config["train_batch_size"],
                count_steps_by=config["multiagent"]["count_steps_by"],
            )) \
            .for_each(TrainOneStep(workers))

        train_op = Concurrently([store_op, replay_op],
                                mode="round_robin",
                                output_indexes=[1])

        return StandardMetricsReporting(train_op, workers, config)
예제 #11
0
def execution_plan(workers, config):
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    # Collect large batches of relevant experiences & standardize.
    rollouts = rollouts.for_each(
        SelectExperiences(workers.trainable_policies()))
    rollouts = rollouts.combine(
        ConcatBatches(min_batch_size=config["train_batch_size"]))
    rollouts = rollouts.for_each(StandardizeFields(["advantages"]))

    if config["simple_optimizer"]:
        train_op = rollouts.for_each(
            TrainOneStep(
                workers,
                num_sgd_iter=config["num_sgd_iter"],
                sgd_minibatch_size=config["sgd_minibatch_size"]))
    else:
        train_op = rollouts.for_each(
            TrainTFMultiGPU(
                workers,
                sgd_minibatch_size=config["sgd_minibatch_size"],
                num_sgd_iter=config["num_sgd_iter"],
                num_gpus=config["num_gpus"],
                rollout_fragment_length=config["rollout_fragment_length"],
                num_envs_per_worker=config["num_envs_per_worker"],
                train_batch_size=config["train_batch_size"],
                shuffle_sequences=config["shuffle_sequences"],
                _fake_gpus=config["_fake_gpus"]))

    # Update KL after each round of training.
    train_op = train_op.for_each(lambda t: t[1]).for_each(UpdateKL(workers))

    return StandardMetricsReporting(train_op, workers, config) \
        .for_each(lambda result: warn_about_bad_reward_scales(config, result))
예제 #12
0
def execution_plan(workers, config):
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    if config["microbatch_size"]:
        num_microbatches = math.ceil(
            config["train_batch_size"] / config["microbatch_size"])
        # In microbatch mode, we want to compute gradients on experience
        # microbatches, average a number of these microbatches, and then apply
        # the averaged gradient in one SGD step. This conserves GPU memory,
        # allowing for extremely large experience batches to be used.
        train_op = (
            rollouts.combine(
                ConcatBatches(min_batch_size=config["microbatch_size"]))
            .for_each(ComputeGradients(workers))  # (grads, info)
            .batch(num_microbatches)  # List[(grads, info)]
            .for_each(AverageGradients())  # (avg_grads, info)
            .for_each(ApplyGradients(workers)))
    else:
        # In normal mode, we execute one SGD step per each train batch.
        train_op = rollouts \
            .combine(ConcatBatches(
                min_batch_size=config["train_batch_size"])) \
            .for_each(TrainOneStep(workers))

    return StandardMetricsReporting(train_op, workers, config)
예제 #13
0
def execution_plan(workers: WorkerSet,
                   config: TrainerConfigDict) -> LocalIterator[dict]:
    local_replay_buffer = LocalReplayBuffer(
        num_shards=1,
        learning_starts=config["learning_starts"],
        buffer_size=config["buffer_size"],
        replay_batch_size=config["train_batch_size"],
        replay_mode=config["multiagent"]["replay_mode"],
        replay_sequence_length=config["replay_sequence_length"])

    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    # (1) Generate rollouts and store them in our local replay buffer.
    store_op = rollouts.for_each(
        StoreToReplayBuffer(local_buffer=local_replay_buffer))

    # (2) Read and train on experiences from the replay buffer.
    replay_op = Replay(local_buffer=local_replay_buffer) \
        .for_each(TrainOneStep(workers)) \
        .for_each(UpdateTargetNetwork(
            workers, config["target_network_update_freq"]))

    # Alternate deterministically between (1) and (2).
    train_op = Concurrently([store_op, replay_op],
                            mode="round_robin",
                            output_indexes=[1])

    return StandardMetricsReporting(train_op, workers, config)
예제 #14
0
파일: dqn.py 프로젝트: zhangjiekui/ray
def execution_plan(workers, config):
    if config.get("prioritized_replay"):
        prio_args = {
            "prioritized_replay_alpha": config["prioritized_replay_alpha"],
            "prioritized_replay_beta": config["prioritized_replay_beta"],
            "prioritized_replay_eps": config["prioritized_replay_eps"],
        }
    else:
        prio_args = {}

    local_replay_buffer = LocalReplayBuffer(
        num_shards=1,
        learning_starts=config["learning_starts"],
        buffer_size=config["buffer_size"],
        replay_batch_size=config["train_batch_size"],
        multiagent_sync_replay=config.get("multiagent_sync_replay"),
        **prio_args)

    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    # We execute the following steps concurrently:
    # (1) Generate rollouts and store them in our local replay buffer. Calling
    # next() on store_op drives this.
    store_op = rollouts.for_each(
        StoreToReplayBuffer(local_buffer=local_replay_buffer))

    def update_prio(item):
        samples, info_dict = item
        if config.get("prioritized_replay"):
            prio_dict = {}
            for policy_id, info in info_dict.items():
                # TODO(sven): This is currently structured differently for
                #  torch/tf. Clean up these results/info dicts across
                #  policies (note: fixing this in torch_policy.py will
                #  break e.g. DDPPO!).
                td_error = info.get("td_error",
                                    info[LEARNER_STATS_KEY].get("td_error"))
                prio_dict[policy_id] = (samples.policy_batches[policy_id]
                                        .data.get("batch_indexes"), td_error)
            local_replay_buffer.update_priorities(prio_dict)
        return info_dict

    # (2) Read and train on experiences from the replay buffer. Every batch
    # returned from the LocalReplay() iterator is passed to TrainOneStep to
    # take a SGD step, and then we decide whether to update the target network.
    post_fn = config.get("before_learn_on_batch") or (lambda b, *a: b)
    replay_op = Replay(local_buffer=local_replay_buffer) \
        .for_each(lambda x: post_fn(x, workers, config)) \
        .for_each(TrainOneStep(workers)) \
        .for_each(update_prio) \
        .for_each(UpdateTargetNetwork(
            workers, config["target_network_update_freq"]))

    # Alternate deterministically between (1) and (2). Only return the output
    # of (2) since training metrics are not available until (2) runs.
    train_op = Concurrently(
        [store_op, replay_op], mode="round_robin", output_indexes=[1])

    return StandardMetricsReporting(train_op, workers, config)
예제 #15
0
def test_train_one_step(ray_start_regular_shared):
    workers = make_workers(0)
    a = ParallelRollouts(workers, mode="bulk_sync")
    b = a.for_each(TrainOneStep(workers))
    assert "learner_stats" in next(b)
    counters = a.shared_metrics.get().counters
    assert counters["num_steps_sampled"] == 100, counters
    assert counters["num_steps_trained"] == 100, counters
    timers = a.shared_metrics.get().timers
    assert "learn" in timers
    workers.stop()
예제 #16
0
def execution_plan(workers: WorkerSet,
                   config: TrainerConfigDict) -> LocalIterator[dict]:
    """Execution plan of the PPO algorithm. Defines the distributed dataflow.

    Args:
        workers (WorkerSet): The WorkerSet for training the Polic(y/ies)
            of the Trainer.
        config (TrainerConfigDict): The trainer's configuration dict.

    Returns:
        LocalIterator[dict]: The Policy class to use with PPOTrainer.
            If None, use `default_policy` provided in build_trainer().
    """
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    # Collect batches for the trainable policies.
    rollouts = rollouts.for_each(
        SelectExperiences(workers.trainable_policies()))
    # Concatenate the SampleBatches into one.
    rollouts = rollouts.combine(
        ConcatBatches(
            min_batch_size=config["train_batch_size"],
            count_steps_by=config["multiagent"]["count_steps_by"],
        ))
    # Standardize advantages.
    rollouts = rollouts.for_each(StandardizeFields(["advantages"]))

    # Perform one training step on the combined + standardized batch.
    if config["simple_optimizer"]:
        train_op = rollouts.for_each(
            TrainOneStep(
                workers,
                num_sgd_iter=config["num_sgd_iter"],
                sgd_minibatch_size=config["sgd_minibatch_size"]))
    else:
        train_op = rollouts.for_each(
            TrainTFMultiGPU(
                workers,
                sgd_minibatch_size=config["sgd_minibatch_size"],
                num_sgd_iter=config["num_sgd_iter"],
                num_gpus=config["num_gpus"],
                rollout_fragment_length=config["rollout_fragment_length"],
                num_envs_per_worker=config["num_envs_per_worker"],
                train_batch_size=config["train_batch_size"],
                shuffle_sequences=config["shuffle_sequences"],
                _fake_gpus=config["_fake_gpus"],
                framework=config.get("framework")))

    # Update KL after each round of training.
    train_op = train_op.for_each(lambda t: t[1]).for_each(UpdateKL(workers))

    # Warn about bad reward scales and return training metrics.
    return StandardMetricsReporting(train_op, workers, config) \
        .for_each(lambda result: warn_about_bad_reward_scales(config, result))
예제 #17
0
파일: cql.py 프로젝트: zivzone/ray
def execution_plan(workers, config):
    if config.get("prioritized_replay"):
        prio_args = {
            "prioritized_replay_alpha": config["prioritized_replay_alpha"],
            "prioritized_replay_beta": config["prioritized_replay_beta"],
            "prioritized_replay_eps": config["prioritized_replay_eps"],
        }
    else:
        prio_args = {}

    local_replay_buffer = LocalReplayBuffer(
        num_shards=1,
        learning_starts=config["learning_starts"],
        buffer_size=config["buffer_size"],
        replay_batch_size=config["train_batch_size"],
        replay_mode=config["multiagent"]["replay_mode"],
        replay_sequence_length=config.get("replay_sequence_length", 1),
        **prio_args)

    global replay_buffer
    replay_buffer = local_replay_buffer

    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    store_op = rollouts.for_each(
        NoOpReplayBuffer(local_buffer=local_replay_buffer))

    def update_prio(item):
        samples, info_dict = item
        if config.get("prioritized_replay"):
            prio_dict = {}
            for policy_id, info in info_dict.items():
                td_error = info.get("td_error",
                                    info[LEARNER_STATS_KEY].get("td_error"))
                prio_dict[policy_id] = (
                    samples.policy_batches[policy_id].get("batch_indexes"),
                    td_error)
            local_replay_buffer.update_priorities(prio_dict)
        return info_dict

    post_fn = config.get("before_learn_on_batch") or (lambda b, *a: b)
    replay_op = Replay(local_buffer=local_replay_buffer) \
        .for_each(lambda x: post_fn(x, workers, config)) \
        .for_each(TrainOneStep(workers)) \
        .for_each(update_prio) \
        .for_each(UpdateTargetNetwork(
            workers, config["target_network_update_freq"]))

    train_op = Concurrently([store_op, replay_op],
                            mode="round_robin",
                            output_indexes=[1],
                            round_robin_weights=calculate_rr_weights(config))

    return StandardMetricsReporting(train_op, workers, config)
예제 #18
0
def execution_plan(workers: WorkerSet, config: TrainerConfigDict,
                   **kwargs) -> LocalIterator[dict]:
    """Execution plan of the A2C algorithm. Defines the distributed
    dataflow.

    Args:
        workers (WorkerSet): The WorkerSet for training the Polic(y/ies)
            of the Trainer.
        config (TrainerConfigDict): The trainer's configuration dict.

    Returns:
        LocalIterator[dict]: A local iterator over training metrics.
    """
    assert len(kwargs) == 0, (
        "A2C execution_plan does NOT take any additional parameters")

    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    if config["microbatch_size"]:
        num_microbatches = math.ceil(config["train_batch_size"] /
                                     config["microbatch_size"])
        # In microbatch mode, we want to compute gradients on experience
        # microbatches, average a number of these microbatches, and then apply
        # the averaged gradient in one SGD step. This conserves GPU memory,
        # allowing for extremely large experience batches to be used.
        train_op = (
            rollouts.combine(
                ConcatBatches(min_batch_size=config["microbatch_size"],
                              count_steps_by=config["multiagent"]
                              ["count_steps_by"])).for_each(
                                  ComputeGradients(workers))  # (grads, info)
            .batch(num_microbatches)  # List[(grads, info)]
            .for_each(AverageGradients())  # (avg_grads, info)
            .for_each(ApplyGradients(workers)))
    else:
        # In normal mode, we execute one SGD step per each train batch.
        if config["simple_optimizer"]:
            train_step_op = TrainOneStep(workers)
        else:
            train_step_op = MultiGPUTrainOneStep(
                workers=workers,
                sgd_minibatch_size=config["train_batch_size"],
                num_sgd_iter=1,
                num_gpus=config["num_gpus"],
                shuffle_sequences=True,
                _fake_gpus=config["_fake_gpus"],
                framework=config.get("framework"))

        train_op = rollouts.combine(
            ConcatBatches(min_batch_size=config["train_batch_size"],
                          count_steps_by=config["multiagent"]
                          ["count_steps_by"])).for_each(train_step_op)

    return StandardMetricsReporting(train_op, workers, config)
예제 #19
0
def execution_plan(trainer: Trainer, workers: WorkerSet,
                   config: TrainerConfigDict, **kwargs) -> LocalIterator[dict]:
    """Execution plan of the Simple Q algorithm. Defines the distributed dataflow.

    Args:
        trainer (Trainer): The Trainer object creating the execution plan.
        workers (WorkerSet): The WorkerSet for training the Polic(y/ies)
            of the Trainer.
        config (TrainerConfigDict): The trainer's configuration dict.

    Returns:
        LocalIterator[dict]: A local iterator over training metrics.
    """
    local_replay_buffer = LocalReplayBuffer(
        num_shards=1,
        learning_starts=config["learning_starts"],
        buffer_size=config["buffer_size"],
        replay_batch_size=config["train_batch_size"],
        replay_mode=config["multiagent"]["replay_mode"],
        replay_sequence_length=config["replay_sequence_length"])
    # Assign to Trainer, so we can store the LocalReplayBuffer's
    # data when we save checkpoints.
    trainer.local_replay_buffer = local_replay_buffer

    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    # (1) Generate rollouts and store them in our local replay buffer.
    store_op = rollouts.for_each(
        StoreToReplayBuffer(local_buffer=local_replay_buffer))

    if config["simple_optimizer"]:
        train_step_op = TrainOneStep(workers)
    else:
        train_step_op = MultiGPUTrainOneStep(
            workers=workers,
            sgd_minibatch_size=config["train_batch_size"],
            num_sgd_iter=1,
            num_gpus=config["num_gpus"],
            shuffle_sequences=True,
            _fake_gpus=config["_fake_gpus"],
            framework=config.get("framework"))

    # (2) Read and train on experiences from the replay buffer.
    replay_op = Replay(local_buffer=local_replay_buffer) \
        .for_each(train_step_op) \
        .for_each(UpdateTargetNetwork(
            workers, config["target_network_update_freq"]))

    # Alternate deterministically between (1) and (2).
    train_op = Concurrently([store_op, replay_op],
                            mode="round_robin",
                            output_indexes=[1])

    return StandardMetricsReporting(train_op, workers, config)
예제 #20
0
def execution_plan(workers, config):
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    train_op = rollouts \
        .combine(ConcatEpisodes(
        num_episodes=config["num_episodes"])) \
        .for_each(TrainOneStep(workers)) \
        .for_each(UpdateTargetNetwork(
        workers, config['target_network_update_freq']))

    return StandardMetricsReporting(train_op, workers, config)
예제 #21
0
def execution_plan(workers, config):
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    train_op = rollouts \
        .for_each(MixInReplay(config["buffer_size"])) \
        .combine(
            ConcatBatches(min_batch_size=config["train_batch_size"])) \
        .for_each(TrainOneStep(workers)) \
        .for_each(UpdateTargetNetwork(
            workers, config["target_network_update_freq"]))

    return StandardMetricsReporting(train_op, workers, config)
예제 #22
0
파일: cql.py 프로젝트: krfricke/ray
    def execution_plan(workers, config, **kwargs):
        assert (
            "local_replay_buffer"
            in kwargs), "CQL execution plan requires a local replay buffer."

        local_replay_buffer = kwargs["local_replay_buffer"]

        def update_prio(item):
            samples, info_dict = item
            if config.get("prioritized_replay"):
                prio_dict = {}
                for policy_id, info in info_dict.items():
                    # TODO(sven): This is currently structured differently for
                    #  torch/tf. Clean up these results/info dicts across
                    #  policies (note: fixing this in torch_policy.py will
                    #  break e.g. DDPPO!).
                    td_error = info.get(
                        "td_error", info[LEARNER_STATS_KEY].get("td_error"))
                    samples.policy_batches[policy_id].set_get_interceptor(None)
                    prio_dict[policy_id] = (
                        samples.policy_batches[policy_id].get("batch_indexes"),
                        td_error,
                    )
                local_replay_buffer.update_priorities(prio_dict)
            return info_dict

        # (2) Read and train on experiences from the replay buffer. Every batch
        # returned from the LocalReplay() iterator is passed to TrainOneStep to
        # take a SGD step, and then we decide whether to update the target
        # network.
        post_fn = config.get("before_learn_on_batch") or (lambda b, *a: b)

        if config["simple_optimizer"]:
            train_step_op = TrainOneStep(workers)
        else:
            train_step_op = MultiGPUTrainOneStep(
                workers=workers,
                sgd_minibatch_size=config["train_batch_size"],
                num_sgd_iter=1,
                num_gpus=config["num_gpus"],
                _fake_gpus=config["_fake_gpus"],
            )

        train_op = (Replay(local_buffer=local_replay_buffer).for_each(
            lambda x: post_fn(x, workers, config)).for_each(
                train_step_op).for_each(update_prio).for_each(
                    UpdateTargetNetwork(workers,
                                        config["target_network_update_freq"])))

        return StandardMetricsReporting(train_op,
                                        workers,
                                        config,
                                        by_steps_trained=True)
예제 #23
0
파일: nfsp.py 프로젝트: indylab/nxdo
def execution_plan(workers: WorkerSet,
                   config: TrainerConfigDict) -> LocalIterator[dict]:
    """Execution plan of the DQN algorithm. Defines the distributed dataflow.

    Args:
        workers (WorkerSet): The WorkerSet for training the Polic(y/ies)
            of the Trainer.
        config (TrainerConfigDict): The trainer's configuration dict.

    Returns:
        LocalIterator[dict]: A local iterator over training metrics.
    """

    replay_buffer_actor = ReservoirReplayActor.remote(
        num_shards=1,
        learning_starts=config["learning_starts"],
        buffer_size=config["buffer_size"],
        replay_batch_size=config["train_batch_size"],
        replay_mode=config["multiagent"]["replay_mode"],
        replay_sequence_length=config["replay_sequence_length"],
    )

    # Store a handle for the replay buffer actor in the local worker
    workers.local_worker().replay_buffer_actor = replay_buffer_actor

    # Read and train on experiences from the replay buffer. Every batch
    # returned from the Replay iterator is passed to TrainOneStep to
    # take a SGD step.
    post_fn = config.get("before_learn_on_batch") or (lambda b, *a: b)

    print("running replay op..")

    def gen_replay(_):
        while True:
            item = ray.get(replay_buffer_actor.replay.remote())
            if item is None:
                yield _NextValueNotReady()
            else:
                yield item

    replay_op = LocalIterator(gen_replay, SharedMetrics()) \
        .for_each(lambda x: post_fn(x, workers, config)) \
        .for_each(TrainOneStep(workers))

    replay_op = StandardMetricsReporting(replay_op, workers, config)

    replay_op = map(
        lambda x: x
        if not isinstance(x, _NextValueNotReady) else {}, replay_op)

    return replay_op
예제 #24
0
    def execution_plan(
        workers: WorkerSet, config: TrainerConfigDict, **kwargs
    ) -> LocalIterator[dict]:
        assert (
            len(kwargs) == 0
        ), "A2C execution_plan does NOT take any additional parameters"

        rollouts = ParallelRollouts(workers, mode="bulk_sync")

        if config["microbatch_size"]:
            num_microbatches = math.ceil(
                config["train_batch_size"] / config["microbatch_size"]
            )
            # In microbatch mode, we want to compute gradients on experience
            # microbatches, average a number of these microbatches, and then
            # apply the averaged gradient in one SGD step. This conserves GPU
            # memory, allowing for extremely large experience batches to be
            # used.
            train_op = (
                rollouts.combine(
                    ConcatBatches(
                        min_batch_size=config["microbatch_size"],
                        count_steps_by=config["multiagent"]["count_steps_by"],
                    )
                )
                .for_each(ComputeGradients(workers))  # (grads, info)
                .batch(num_microbatches)  # List[(grads, info)]
                .for_each(AverageGradients())  # (avg_grads, info)
                .for_each(ApplyGradients(workers))
            )
        else:
            # In normal mode, we execute one SGD step per each train batch.
            if config["simple_optimizer"]:
                train_step_op = TrainOneStep(workers)
            else:
                train_step_op = MultiGPUTrainOneStep(
                    workers=workers,
                    sgd_minibatch_size=config["train_batch_size"],
                    num_sgd_iter=1,
                    num_gpus=config["num_gpus"],
                    _fake_gpus=config["_fake_gpus"],
                )

            train_op = rollouts.combine(
                ConcatBatches(
                    min_batch_size=config["train_batch_size"],
                    count_steps_by=config["multiagent"]["count_steps_by"],
                )
            ).for_each(train_step_op)

        return StandardMetricsReporting(train_op, workers, config)
예제 #25
0
def test_train_one_step(ray_start_regular_shared):
    workers = make_workers(0)
    a = ParallelRollouts(workers, mode="bulk_sync")
    b = a.for_each(TrainOneStep(workers))
    batch, stats = next(b)
    assert isinstance(batch, SampleBatch)
    assert "default_policy" in stats
    assert "learner_stats" in stats["default_policy"]
    counters = a.shared_metrics.get().counters
    assert counters["num_steps_sampled"] == 100, counters
    assert counters["num_steps_trained"] == 100, counters
    timers = a.shared_metrics.get().timers
    assert "learn" in timers
    workers.stop()
예제 #26
0
def off_policy_execution_plan(workers: WorkerSet, config: TrainerConfigDict):
    """RLlib's default execution plan with an added warmup phase."""
    # Collects experiences in parallel from multiple RolloutWorker actors.
    rollouts = ParallelRollouts(workers, mode="bulk_sync")
    # On the first iteration, combine experience batches until we hit `learning_starts`
    # in size.
    rollouts = rollouts.combine(
        LearningStarts(learning_starts=config["learning_starts"]))
    # Then, train the policy on those experiences and update the workers.
    train_op = rollouts.for_each(TrainOneStep(workers))

    # Add on the standard episode reward, etc. metrics reporting. This returns
    # a LocalIterator[metrics_dict] representing metrics for each train step.
    return StandardMetricsReporting(train_op, workers, config)
예제 #27
0
def default_execution_plan(workers: WorkerSet, config: TrainerConfigDict):
    # Collects experiences in parallel from multiple RolloutWorker actors.
    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    # Combine experiences batches until we hit `train_batch_size` in size.
    # Then, train the policy on those experiences and update the workers.
    train_op = rollouts \
        .combine(ConcatBatches(
            min_batch_size=config["train_batch_size"])) \
        .for_each(TrainOneStep(workers))

    # Add on the standard episode reward, etc. metrics reporting. This returns
    # a LocalIterator[metrics_dict] representing metrics for each train step.
    return StandardMetricsReporting(train_op, workers, config)
예제 #28
0
def test_train_one_step(ray_start_regular_shared):
    workers = make_workers(0)
    a = ParallelRollouts(workers, mode="bulk_sync")
    b = a.for_each(TrainOneStep(workers))
    batch, stats = next(b)
    assert isinstance(batch, SampleBatch)
    assert DEFAULT_POLICY_ID in stats
    assert "learner_stats" in stats[DEFAULT_POLICY_ID]
    counters = a.shared_metrics.get().counters
    assert counters[STEPS_SAMPLED_COUNTER] == 100, counters
    assert counters[STEPS_TRAINED_COUNTER] == 100, counters
    timers = a.shared_metrics.get().timers
    assert "learn" in timers
    workers.stop()
예제 #29
0
파일: slateq.py 프로젝트: zivzone/ray
def execution_plan(workers: WorkerSet,
                   config: TrainerConfigDict) -> LocalIterator[dict]:
    """Execution plan of the SlateQ algorithm. Defines the distributed dataflow.

    Args:
        workers (WorkerSet): The WorkerSet for training the Polic(y/ies)
            of the Trainer.
        config (TrainerConfigDict): The trainer's configuration dict.

    Returns:
        LocalIterator[dict]: A local iterator over training metrics.
    """
    local_replay_buffer = LocalReplayBuffer(
        num_shards=1,
        learning_starts=config["learning_starts"],
        buffer_size=config["buffer_size"],
        replay_batch_size=config["train_batch_size"],
        replay_mode=config["multiagent"]["replay_mode"],
        replay_sequence_length=config["replay_sequence_length"],
    )

    rollouts = ParallelRollouts(workers, mode="bulk_sync")

    # We execute the following steps concurrently:
    # (1) Generate rollouts and store them in our local replay buffer. Calling
    # next() on store_op drives this.
    store_op = rollouts.for_each(
        StoreToReplayBuffer(local_buffer=local_replay_buffer))

    # (2) Read and train on experiences from the replay buffer. Every batch
    # returned from the LocalReplay() iterator is passed to TrainOneStep to
    # take a SGD step.
    replay_op = Replay(local_buffer=local_replay_buffer) \
        .for_each(TrainOneStep(workers))

    if config["slateq_strategy"] != "RANDOM":
        # Alternate deterministically between (1) and (2). Only return the
        # output of (2) since training metrics are not available until (2)
        # runs.
        train_op = Concurrently(
            [store_op, replay_op],
            mode="round_robin",
            output_indexes=[1],
            round_robin_weights=calculate_round_robin_weights(config))
    else:
        # No training is needed for the RANDOM strategy.
        train_op = rollouts

    return StandardMetricsReporting(train_op, workers, config)
예제 #30
0
def execution_plan(workers, config):
    rollouts = ParallelRollouts(workers, mode="bulk_sync")
    replay_buffer = SimpleReplayBuffer(config["replay_buffer_size"])

    store_op = rollouts \
        .for_each(StoreToReplayBuffer(local_buffer=replay_buffer))

    replay_op = Replay(local_buffer=replay_buffer) \
        .combine(
            ConcatBatches(min_batch_size=config["train_batch_size"])) \
        .for_each(TrainOneStep(workers))

    train_op = Concurrently([store_op, replay_op],
                            mode="round_robin",
                            output_indexes=[1])

    return StandardMetricsReporting(train_op, workers, config)