class ServeController: """Responsible for managing the state of the serving system. The controller implements fault tolerance by persisting its state in a new checkpoint each time a state change is made. If the actor crashes, the latest checkpoint is loaded and the state is recovered. Checkpoints are written/read using a provided KV-store interface. All hard state in the system is maintained by this actor and persisted via these checkpoints. Soft state required by other components is fetched by those actors from this actor on startup and updates are pushed out from this actor. All other actors started by the controller are named, detached actors so they will not fate share with the controller if it crashes. The following guarantees are provided for state-changing calls to the controller: - If the call succeeds, the change was made and will be reflected in the system even if the controller or other actors die unexpectedly. - If the call fails, the change may have been made but isn't guaranteed to have been. The client should retry in this case. Note that this requires all implementations here to be idempotent. """ async def __init__( self, controller_name: str, http_config: HTTPOptions, checkpoint_path: str, detached: bool = False, _override_controller_namespace: Optional[str] = None, ): configure_component_logger(component_name="controller", component_id=str(os.getpid())) # Used to read/write checkpoints. self.controller_namespace = ray.get_runtime_context().namespace self.controller_name = controller_name self.checkpoint_path = checkpoint_path kv_store_namespace = f"{self.controller_name}-{self.controller_namespace}" self.kv_store = make_kv_store(checkpoint_path, namespace=kv_store_namespace) self.snapshot_store = RayInternalKVStore(namespace=kv_store_namespace) # Dictionary of deployment_name -> proxy_name -> queue length. self.deployment_stats = defaultdict(lambda: defaultdict(dict)) # Used to ensure that only a single state-changing operation happens # at any given time. self.write_lock = asyncio.Lock() self.long_poll_host = LongPollHost() self.http_state = HTTPState( controller_name, detached, http_config, _override_controller_namespace=_override_controller_namespace, ) self.endpoint_state = EndpointState(self.kv_store, self.long_poll_host) # Fetch all running actors in current cluster as source of current # replica state for controller failure recovery all_current_actor_names = ray.util.list_named_actors() self.deployment_state_manager = DeploymentStateManager( controller_name, detached, self.kv_store, self.long_poll_host, all_current_actor_names, _override_controller_namespace=_override_controller_namespace, ) # Reference to Ray task executing most recent deployment request self.config_deployment_request_ref: ObjectRef = None # Unix timestamp of latest config deployment request. Defaults to 0. self.deployment_timestamp = 0 asyncio.get_event_loop().create_task(self.run_control_loop()) def check_alive(self) -> None: """No-op to check if this controller is alive.""" return def get_pid(self) -> int: return os.getpid() def record_autoscaling_metrics(self, data: Dict[str, float], send_timestamp: float): self.deployment_state_manager.record_autoscaling_metrics( data, send_timestamp) def record_handle_metrics(self, data: Dict[str, float], send_timestamp: float): self.deployment_state_manager.record_handle_metrics( data, send_timestamp) def _dump_autoscaling_metrics_for_testing(self): return self.deployment_state_manager.get_autoscaling_metrics() def _dump_replica_states_for_testing(self, deployment_name): return self.deployment_state_manager._deployment_states[ deployment_name]._replicas def _stop_one_running_replica_for_testing(self, deployment_name): self.deployment_state_manager._deployment_states[ deployment_name]._stop_one_running_replica_for_testing() async def listen_for_change(self, keys_to_snapshot_ids: Dict[str, int]): """Proxy long pull client's listen request. Args: keys_to_snapshot_ids (Dict[str, int]): Snapshot IDs are used to determine whether or not the host should immediately return the data or wait for the value to be changed. """ return await ( self.long_poll_host.listen_for_change(keys_to_snapshot_ids)) def get_checkpoint_path(self) -> str: return self.checkpoint_path def get_all_endpoints(self) -> Dict[EndpointTag, Dict[str, Any]]: """Returns a dictionary of deployment name to config.""" return self.endpoint_state.get_endpoints() def get_http_proxies(self) -> Dict[NodeId, ActorHandle]: """Returns a dictionary of node ID to http_proxy actor handles.""" return self.http_state.get_http_proxy_handles() def get_http_proxy_names(self) -> bytes: """Returns the http_proxy actor name list serialized by protobuf.""" from ray.serve.generated.serve_pb2 import ActorNameList actor_name_list = ActorNameList( names=self.http_state.get_http_proxy_names().values()) return actor_name_list.SerializeToString() async def run_control_loop(self) -> None: # NOTE(edoakes): we catch all exceptions here and simply log them, # because an unhandled exception would cause the main control loop to # halt, which should *never* happen. while True: async with self.write_lock: try: self.http_state.update() except Exception: logger.exception("Exception updating HTTP state.") try: self.deployment_state_manager.update() except Exception: logger.exception("Exception updating deployment state.") try: self._put_serve_snapshot() except Exception: logger.exception("Exception putting serve snapshot.") await asyncio.sleep(CONTROL_LOOP_PERIOD_S) def _put_serve_snapshot(self) -> None: val = dict() for deployment_name, ( deployment_info, route_prefix, ) in self.list_deployments_internal(include_deleted=True).items(): entry = dict() entry["name"] = deployment_name entry["namespace"] = ray.get_runtime_context().namespace entry["ray_job_id"] = deployment_info.deployer_job_id.hex() entry[ "class_name"] = deployment_info.replica_config.deployment_def_name entry["version"] = deployment_info.version entry["http_route"] = route_prefix entry["start_time"] = deployment_info.start_time_ms entry["end_time"] = deployment_info.end_time_ms or 0 entry[ "status"] = "DELETED" if deployment_info.end_time_ms else "RUNNING" entry["actors"] = dict() if entry["status"] == "RUNNING": replicas = self.deployment_state_manager._deployment_states[ deployment_name]._replicas running_replicas = replicas.get([ReplicaState.RUNNING]) for replica in running_replicas: try: actor_handle = replica.actor_handle except ValueError: # Actor died or hasn't yet been created. continue actor_id = actor_handle._ray_actor_id.hex() replica_tag = replica.replica_tag replica_version = (None if (replica.version is None or replica.version.unversioned) else replica.version.code_version) entry["actors"][actor_id] = { "replica_tag": replica_tag, "version": replica_version, } val[deployment_name] = entry self.snapshot_store.put(SNAPSHOT_KEY, json.dumps(val).encode("utf-8")) def _all_running_replicas(self) -> Dict[str, List[RunningReplicaInfo]]: """Used for testing.""" return self.deployment_state_manager.get_running_replica_infos() def get_http_config(self): """Return the HTTP proxy configuration.""" return self.http_state.get_config() def get_root_url(self): """Return the root url for the serve instance.""" http_config = self.get_http_config() if http_config.root_url == "": if SERVE_ROOT_URL_ENV_KEY in os.environ: return os.environ[SERVE_ROOT_URL_ENV_KEY] else: return (f"http://{http_config.host}:{http_config.port}" f"{http_config.root_path}") return http_config.root_url async def shutdown(self): """Shuts down the serve instance completely.""" async with self.write_lock: self.deployment_state_manager.shutdown() self.endpoint_state.shutdown() self.http_state.shutdown() def deploy( self, name: str, deployment_config_proto_bytes: bytes, replica_config_proto_bytes: bytes, route_prefix: Optional[str], deployer_job_id: "ray._raylet.JobID", ) -> bool: if route_prefix is not None: assert route_prefix.startswith("/") deployment_config = DeploymentConfig.from_proto_bytes( deployment_config_proto_bytes) version = deployment_config.version prev_version = deployment_config.prev_version replica_config = ReplicaConfig.from_proto_bytes( replica_config_proto_bytes, deployment_config.deployment_language) if prev_version is not None: existing_deployment_info = self.deployment_state_manager.get_deployment( name) if existing_deployment_info is None or not existing_deployment_info.version: raise ValueError( f"prev_version '{prev_version}' is specified but " "there is no existing deployment.") if existing_deployment_info.version != prev_version: raise ValueError( f"prev_version '{prev_version}' " "does not match with the existing " f"version '{existing_deployment_info.version}'.") autoscaling_config = deployment_config.autoscaling_config if autoscaling_config is not None: # TODO: is this the desired behaviour? Should this be a setting? deployment_config.num_replicas = autoscaling_config.min_replicas autoscaling_policy = BasicAutoscalingPolicy(autoscaling_config) else: autoscaling_policy = None deployment_info = DeploymentInfo( actor_name=name, version=version, deployment_config=deployment_config, replica_config=replica_config, deployer_job_id=deployer_job_id, start_time_ms=int(time.time() * 1000), autoscaling_policy=autoscaling_policy, ) # TODO(architkulkarni): When a deployment is redeployed, even if # the only change was num_replicas, the start_time_ms is refreshed. # Is this the desired behaviour? updating = self.deployment_state_manager.deploy(name, deployment_info) if route_prefix is not None: endpoint_info = EndpointInfo(route=route_prefix) self.endpoint_state.update_endpoint(name, endpoint_info) else: self.endpoint_state.delete_endpoint(name) return updating def deploy_group(self, deployment_args_list: List[Dict]) -> List[bool]: """ Takes in a list of dictionaries that contain keyword arguments for the controller's deploy() function. Calls deploy on all the argument dictionaries in the list. Effectively executes an atomic deploy on a group of deployments. """ return [self.deploy(**args) for args in deployment_args_list] def deploy_app( self, import_path: str, runtime_env: Dict, deployment_override_options: List[Dict], ) -> None: """Kicks off a task that deploys a Serve application. Cancels any previous in-progress task that is deploying a Serve application. Args: import_path: Serve deployment graph's import path runtime_env: runtime_env to run the deployment graph in deployment_override_options: All dictionaries should contain argument-value options that can be passed directly into a set_options() call. Overrides deployment options set in the graph itself. """ if self.config_deployment_request_ref is not None: ray.cancel(self.config_deployment_request_ref) logger.info("Received new config deployment request. Cancelling " "previous request.") self.config_deployment_request_ref = run_graph.options( runtime_env=runtime_env).remote(import_path, runtime_env, deployment_override_options) self.deployment_timestamp = time.time() def delete_deployment(self, name: str): self.endpoint_state.delete_endpoint(name) return self.deployment_state_manager.delete_deployment(name) def delete_deployments(self, names: Iterable[str]) -> None: for name in names: self.delete_deployment(name) def get_deployment_info(self, name: str) -> bytes: """Get the current information about a deployment. Args: name(str): the name of the deployment. Returns: DeploymentRoute's protobuf serialized bytes Raises: KeyError if the deployment doesn't exist. """ deployment_info = self.deployment_state_manager.get_deployment(name) if deployment_info is None: raise KeyError(f"Deployment {name} does not exist.") route = self.endpoint_state.get_endpoint_route(name) from ray.serve.generated.serve_pb2 import DeploymentRoute deployment_route = DeploymentRoute( deployment_info=deployment_info.to_proto(), route=route) return deployment_route.SerializeToString() def list_deployments_internal( self, include_deleted: Optional[bool] = False ) -> Dict[str, Tuple[DeploymentInfo, str]]: """Gets the current information about all deployments. Args: include_deleted(bool): Whether to include information about deployments that have been deleted. Returns: Dict(deployment_name, (DeploymentInfo, route)) Raises: KeyError if the deployment doesn't exist. """ return { name: ( self.deployment_state_manager.get_deployment( name, include_deleted=include_deleted), self.endpoint_state.get_endpoint_route(name), ) for name in self.deployment_state_manager.get_deployment_configs( include_deleted=include_deleted) } def list_deployments(self, include_deleted: Optional[bool] = False) -> bytes: """Gets the current information about all deployments. Args: include_deleted(bool): Whether to include information about deployments that have been deleted. Returns: DeploymentRouteList's protobuf serialized bytes """ from ray.serve.generated.serve_pb2 import DeploymentRouteList, DeploymentRoute deployment_route_list = DeploymentRouteList() for deployment_name, ( deployment_info, route_prefix, ) in self.list_deployments_internal( include_deleted=include_deleted).items(): deployment_info_proto = deployment_info.to_proto() deployment_info_proto.name = deployment_name deployment_route_list.deployment_routes.append( DeploymentRoute(deployment_info=deployment_info_proto, route=route_prefix)) return deployment_route_list.SerializeToString() async def get_serve_status(self) -> bytes: serve_app_status = ApplicationStatus.RUNNING serve_app_message = "" deployment_timestamp = self.deployment_timestamp if self.config_deployment_request_ref: finished, pending = ray.wait([self.config_deployment_request_ref], timeout=0) if pending: serve_app_status = ApplicationStatus.DEPLOYING else: try: await finished[0] except RayTaskError: serve_app_status = ApplicationStatus.DEPLOY_FAILED serve_app_message = f"Deployment failed:\n{traceback.format_exc()}" app_status = ApplicationStatusInfo(serve_app_status, serve_app_message, deployment_timestamp) deployment_statuses = self.deployment_state_manager.get_deployment_statuses( ) status_info = StatusOverview( app_status=app_status, deployment_statuses=deployment_statuses, ) return status_info.to_proto().SerializeToString()
class ServeController: """Responsible for managing the state of the serving system. The controller implements fault tolerance by persisting its state in a new checkpoint each time a state change is made. If the actor crashes, the latest checkpoint is loaded and the state is recovered. Checkpoints are written/read using a provided KV-store interface. All hard state in the system is maintained by this actor and persisted via these checkpoints. Soft state required by other components is fetched by those actors from this actor on startup and updates are pushed out from this actor. All other actors started by the controller are named, detached actors so they will not fate share with the controller if it crashes. The following guarantees are provided for state-changing calls to the controller: - If the call succeeds, the change was made and will be reflected in the system even if the controller or other actors die unexpectedly. - If the call fails, the change may have been made but isn't guaranteed to have been. The client should retry in this case. Note that this requires all implementations here to be idempotent. """ async def __init__( self, controller_name: str, http_config: HTTPOptions, checkpoint_path: str, detached: bool = False, ): # Used to read/write checkpoints. self.controller_namespace = ray.get_runtime_context().namespace self.controller_name = controller_name self.checkpoint_path = checkpoint_path kv_store_namespace = f"{self.controller_name}-{self.controller_namespace}" self.kv_store = make_kv_store(checkpoint_path, namespace=kv_store_namespace) self.snapshot_store = RayInternalKVStore(namespace=kv_store_namespace) # Dictionary of deployment_name -> proxy_name -> queue length. self.deployment_stats = defaultdict(lambda: defaultdict(dict)) # Used to ensure that only a single state-changing operation happens # at any given time. self.write_lock = asyncio.Lock() self.long_poll_host = LongPollHost() self.http_state = HTTPState(controller_name, detached, http_config) self.endpoint_state = EndpointState(self.kv_store, self.long_poll_host) # Fetch all running actors in current cluster as source of current # replica state for controller failure recovery all_current_actor_names = ray.util.list_named_actors() self.deployment_state_manager = DeploymentStateManager( controller_name, detached, self.kv_store, self.long_poll_host, all_current_actor_names, ) # TODO(simon): move autoscaling related stuff into a manager. self.autoscaling_metrics_store = InMemoryMetricsStore() asyncio.get_event_loop().create_task(self.run_control_loop()) def record_autoscaling_metrics(self, data: Dict[str, float], send_timestamp: float): self.autoscaling_metrics_store.add_metrics_point(data, send_timestamp) def _dump_autoscaling_metrics_for_testing(self): return self.autoscaling_metrics_store.data def _dump_replica_states_for_testing(self, deployment_name): return self.deployment_state_manager._deployment_states[ deployment_name ]._replicas def _stop_one_running_replica_for_testing(self, deployment_name): self.deployment_state_manager._deployment_states[ deployment_name ]._stop_one_running_replica_for_testing() async def listen_for_change(self, keys_to_snapshot_ids: Dict[str, int]): """Proxy long pull client's listen request. Args: keys_to_snapshot_ids (Dict[str, int]): Snapshot IDs are used to determine whether or not the host should immediately return the data or wait for the value to be changed. """ return await (self.long_poll_host.listen_for_change(keys_to_snapshot_ids)) def get_checkpoint_path(self) -> str: return self.checkpoint_path def get_all_endpoints(self) -> Dict[EndpointTag, Dict[str, Any]]: """Returns a dictionary of deployment name to config.""" return self.endpoint_state.get_endpoints() def get_http_proxies(self) -> Dict[NodeId, ActorHandle]: """Returns a dictionary of node ID to http_proxy actor handles.""" return self.http_state.get_http_proxy_handles() def autoscale(self) -> None: """Updates autoscaling deployments with calculated num_replicas.""" for deployment_name, ( deployment_info, route_prefix, ) in self.list_deployments().items(): deployment_config = deployment_info.deployment_config autoscaling_policy = deployment_info.autoscaling_policy if autoscaling_policy is None: continue replicas = self.deployment_state_manager._deployment_states[ deployment_name ]._replicas running_replicas = replicas.get([ReplicaState.RUNNING]) current_num_ongoing_requests = [] for replica in running_replicas: replica_tag = replica.replica_tag num_ongoing_requests = self.autoscaling_metrics_store.window_average( replica_tag, time.time() - autoscaling_policy.config.look_back_period_s, ) if num_ongoing_requests is not None: current_num_ongoing_requests.append(num_ongoing_requests) if len(current_num_ongoing_requests) == 0: continue new_deployment_config = deployment_config.copy() decision_num_replicas = autoscaling_policy.get_decision_num_replicas( current_num_ongoing_requests=current_num_ongoing_requests, curr_target_num_replicas=deployment_config.num_replicas, ) new_deployment_config.num_replicas = decision_num_replicas new_deployment_info = copy(deployment_info) new_deployment_info.deployment_config = new_deployment_config self.deployment_state_manager.deploy(deployment_name, new_deployment_info) async def run_control_loop(self) -> None: # NOTE(edoakes): we catch all exceptions here and simply log them, # because an unhandled exception would cause the main control loop to # halt, which should *never* happen. while True: try: self.autoscale() except Exception: logger.exception("Exception in autoscaling.") async with self.write_lock: try: self.http_state.update() except Exception: logger.exception("Exception updating HTTP state.") try: self.deployment_state_manager.update() except Exception: logger.exception("Exception updating deployment state.") try: self._put_serve_snapshot() except Exception: logger.exception("Exception putting serve snapshot.") await asyncio.sleep(CONTROL_LOOP_PERIOD_S) def _put_serve_snapshot(self) -> None: val = dict() for deployment_name, (deployment_info, route_prefix) in self.list_deployments( include_deleted=True ).items(): entry = dict() entry["name"] = deployment_name entry["namespace"] = ray.get_runtime_context().namespace entry["ray_job_id"] = deployment_info.deployer_job_id.hex() entry["class_name"] = deployment_info.replica_config.func_or_class_name entry["version"] = deployment_info.version entry["http_route"] = route_prefix entry["start_time"] = deployment_info.start_time_ms entry["end_time"] = deployment_info.end_time_ms or 0 entry["status"] = "DELETED" if deployment_info.end_time_ms else "RUNNING" entry["actors"] = dict() if entry["status"] == "RUNNING": replicas = self.deployment_state_manager._deployment_states[ deployment_name ]._replicas running_replicas = replicas.get([ReplicaState.RUNNING]) for replica in running_replicas: try: actor_handle = replica.actor_handle except ValueError: # Actor died or hasn't yet been created. continue actor_id = actor_handle._ray_actor_id.hex() replica_tag = replica.replica_tag replica_version = ( None if (replica.version is None or replica.version.unversioned) else replica.version.code_version ) entry["actors"][actor_id] = { "replica_tag": replica_tag, "version": replica_version, } val[deployment_name] = entry self.snapshot_store.put(SNAPSHOT_KEY, json.dumps(val).encode("utf-8")) def _all_running_replicas(self) -> Dict[str, List[RunningReplicaInfo]]: """Used for testing.""" return self.deployment_state_manager.get_running_replica_infos() def get_http_config(self): """Return the HTTP proxy configuration.""" return self.http_state.get_config() def get_root_url(self): """Return the root url for the serve instance.""" http_config = self.get_http_config() if http_config.root_url == "": if SERVE_ROOT_URL_ENV_KEY in os.environ: return os.environ[SERVE_ROOT_URL_ENV_KEY] else: return ( f"http://{http_config.host}:{http_config.port}" f"{http_config.root_path}" ) return http_config.root_url async def shutdown(self): """Shuts down the serve instance completely.""" async with self.write_lock: self.deployment_state_manager.shutdown() self.endpoint_state.shutdown() self.http_state.shutdown() def deploy( self, name: str, deployment_config_proto_bytes: bytes, replica_config: ReplicaConfig, version: Optional[str], prev_version: Optional[str], route_prefix: Optional[str], deployer_job_id: "ray._raylet.JobID", ) -> bool: if route_prefix is not None: assert route_prefix.startswith("/") deployment_config = DeploymentConfig.from_proto_bytes( deployment_config_proto_bytes ) if prev_version is not None: existing_deployment_info = self.deployment_state_manager.get_deployment( name ) if existing_deployment_info is None or not existing_deployment_info.version: raise ValueError( f"prev_version '{prev_version}' is specified but " "there is no existing deployment." ) if existing_deployment_info.version != prev_version: raise ValueError( f"prev_version '{prev_version}' " "does not match with the existing " f"version '{existing_deployment_info.version}'." ) autoscaling_config = deployment_config.autoscaling_config if autoscaling_config is not None: # TODO: is this the desired behaviour? Should this be a setting? deployment_config.num_replicas = autoscaling_config.min_replicas autoscaling_policy = BasicAutoscalingPolicy(autoscaling_config) else: autoscaling_policy = None deployment_info = DeploymentInfo( actor_name=name, serialized_deployment_def=replica_config.serialized_deployment_def, version=version, deployment_config=deployment_config, replica_config=replica_config, deployer_job_id=deployer_job_id, start_time_ms=int(time.time() * 1000), autoscaling_policy=autoscaling_policy, ) # TODO(architkulkarni): When a deployment is redeployed, even if # the only change was num_replicas, the start_time_ms is refreshed. # Is this the desired behaviour? updating = self.deployment_state_manager.deploy(name, deployment_info) if route_prefix is not None: endpoint_info = EndpointInfo(route=route_prefix) self.endpoint_state.update_endpoint(name, endpoint_info) return updating def deploy_group(self, deployment_args_list: List[Dict]) -> List[bool]: """ Takes in a list of dictionaries that contain keyword arguments for the controller's deploy() function. Calls deploy on all the argument dictionaries in the list. Effectively executes an atomic deploy on a group of deployments. """ return [self.deploy(**args) for args in deployment_args_list] def delete_deployment(self, name: str): self.endpoint_state.delete_endpoint(name) return self.deployment_state_manager.delete_deployment(name) def get_deployment_info(self, name: str) -> Tuple[DeploymentInfo, str]: """Get the current information about a deployment. Args: name(str): the name of the deployment. Returns: (DeploymentInfo, route) Raises: KeyError if the deployment doesn't exist. """ deployment_info = self.deployment_state_manager.get_deployment(name) if deployment_info is None: raise KeyError(f"Deployment {name} does not exist.") route = self.endpoint_state.get_endpoint_route(name) return deployment_info, route def list_deployments( self, include_deleted: Optional[bool] = False ) -> Dict[str, Tuple[DeploymentInfo, str]]: """Gets the current information about all deployments. Args: include_deleted(bool): Whether to include information about deployments that have been deleted. Returns: Dict(deployment_name, (DeploymentInfo, route)) Raises: KeyError if the deployment doesn't exist. """ return { name: ( self.deployment_state_manager.get_deployment( name, include_deleted=include_deleted ), self.endpoint_state.get_endpoint_route(name), ) for name in self.deployment_state_manager.get_deployment_configs( include_deleted=include_deleted ) } def get_deployment_statuses(self) -> Dict[str, DeploymentStatusInfo]: return self.deployment_state_manager.get_deployment_statuses()