예제 #1
0
파일: apex.py 프로젝트: zionzheng/ray
APEX_DDPG_DEFAULT_CONFIG = merge_dicts(
    DDPG_CONFIG,
    {
        'optimizer_class':
        'ApexOptimizer',
        'optimizer_config':
        merge_dicts(
            DDPG_CONFIG['optimizer_config'], {
                'max_weight_sync_delay': 400,
                'num_replay_buffer_shards': 4,
                'debug': False
            }),
        'n_step':
        3,
        'num_workers':
        32,
        'buffer_size':
        2000000,
        'learning_starts':
        50000,
        'train_batch_size':
        512,
        'sample_batch_size':
        50,
        'max_weight_sync_delay':
        400,
        'target_network_update_freq':
        500000,
        'timesteps_per_iteration':
        25000,
        'per_worker_exploration':
        True,
        'worker_side_prioritization':
        True,
    },
)
예제 #2
0
파일: apex.py 프로젝트: goodluckwlx/ray
APEX_DEFAULT_CONFIG = merge_dicts(
    DQN_CONFIG,
    {
        "optimizer_class":
        "AsyncSamplesOptimizer",
        "optimizer":
        merge_dicts(
            DQN_CONFIG["optimizer"], {
                "max_weight_sync_delay": 400,
                "num_replay_buffer_shards": 4,
                "debug": False
            }),
        "n_step":
        3,
        "gpu":
        True,
        "num_workers":
        32,
        "buffer_size":
        2000000,
        "learning_starts":
        50000,
        "train_batch_size":
        512,
        "sample_batch_size":
        50,
        "target_network_update_freq":
        500000,
        "timesteps_per_iteration":
        25000,
        "per_worker_exploration":
        True,
        "worker_side_prioritization":
        True,
    },
)