def fit_on_spark(self, train_df: DF, evaluate_df: OPTIONAL_DF = None, fs_directory: Optional[str] = None, compression: Optional[str] = None, num_steps=None, profile=False, reduce_results=True, max_retries=3, info=None): super().fit_on_spark(train_df, evaluate_df) train_df = self._check_and_convert(train_df) if evaluate_df is not None: evaluate_df = self._check_and_convert(evaluate_df) train_ds = create_ml_dataset_from_spark(train_df, self._num_workers, self._batch_size, fs_directory, compression) evaluate_ds = None if evaluate_df is not None: evaluate_ds = create_ml_dataset_from_spark(evaluate_df, self._num_workers, self._batch_size, fs_directory, compression) return self.fit(train_ds, evaluate_ds, num_steps, profile, reduce_results, max_retries, info)
def fit_on_spark(self, train_df: DF, evaluate_df: OPTIONAL_DF = None, fs_directory: Optional[str] = None, compression: Optional[str] = None) -> NoReturn: super(TFEstimator, self).fit_on_spark(train_df, evaluate_df) train_df = self._check_and_convert(train_df) if evaluate_df is not None: evaluate_df = self._check_and_convert(evaluate_df) train_ds = create_ml_dataset_from_spark(train_df, self._num_workers, self._batch_size, fs_directory, compression) evaluate_ds = None if evaluate_df is not None: evaluate_ds = create_ml_dataset_from_spark(evaluate_df, self._num_workers, self._batch_size, fs_directory, compression) return self.fit(train_ds, evaluate_ds)