def test_eval_child_ray(self): ray_in = Ray(origin=(-1.0, -2.0, -3.0), direction=(1.0, 2.0, 3.0), E_vector=(1.0, -2.0, 0.0), E1_amp=(1.0 + 1.0j), E2_amp=(2.0 + 0.0j), refractive_index=1.5) mat = FullDielectricMaterial(n_inside=1.0, n_outside=1.5, reflection_threshold=-0.01, transmission_threshold=-0.01) out = RayCollection(8) ray_idx = 123 point = (0.0, 0.0, 0.0) normal = (0.0, 0.0, -1.0) tangent = (0.0, -1.0, 0.0) mat.eval_child_ray(ray_in, ray_idx, point, normal, tangent, out) self.assertEqual(len(out), 2) aspect_in = dotprod(norm(ray_in.direction), norm(normal)) P_in = (P(ray_in.E1_amp) + P(ray_in.E2_amp)) * (ray_in.refractive_index.real) print("D_in:", norm((1.0, 2.0, 3.0)), "P_in:", P_in * aspect_in) for item in out: E1 = item.E1_amp E2 = item.E2_amp aspect_out = dotprod(norm(item.direction), norm(normal)) print((P(E1) + P(E2)) * (item.refractive_index.real) * aspect_out, item.refractive_index)
def test_brewster_angle(self): n_out = 1.2 n_in = 2.0 theta_B = numpy.arctan2(n_in, n_out) print("Brewsters angle:", theta_B * 180 / numpy.pi) y = numpy.sin(theta_B) z = numpy.cos(theta_B) #angle inside dielectric (for transmitted ray) theta_inside = numpy.arcsin(n_out * numpy.sin(theta_B) / n_in) trans_direction = norm( (0.0, numpy.sin(theta_inside), numpy.cos(theta_inside))) ###input ray is directed into object ray_in = Ray(origin=(0.0, -y, -z), direction=(0.0, y, z), E_vector=(0.0, 1.0, 0.0), E1_amp=(1.0 + 1.0j), E2_amp=(0.0 + 0.0j), refractive_index=n_out) mat = FullDielectricMaterial(n_inside=n_in, n_outside=n_out, reflection_threshold=-0.01, transmission_threshold=-0.01) out = RayCollection(8) ray_idx = 123 point = (0.0, 0.0, 0.0) normal = (0.0, 0.0, -1.0) tangent = (0.0, -1.0, 0.0) P_in = ray_power(ray_in) mat.eval_child_ray(ray_in, ray_idx, point, normal, tangent, out) self.assertEqual(len(out), 2) refl_pow = ray_power(out[0]) trans_pow = ray_power(out[1]) self.assertAlmostEqual(0.0, refl_pow) self.assertAlmostEqual(refl_pow, out[0].power) self.assertAlmostEqual(P_in, trans_pow) ###check relfected ray direction self.assertAlmostEqual( abs( dotprod(norm(subvv(ray_in.direction, out[0].direction)), normal)), 1) ###check transmitted ray direction self.assertAlmostEqual(abs(dotprod(out[1].direction, trans_direction)), 1)
def test_norm(self): a = [1.1, 2.2, 3.3] b = ctracer.norm(a) print("B", b) self.assertAlmostEqual(1.0, sum(x**2 for x in b)) self.assertAlmostEqual(0.0, ctracer.mag(ctracer.cross(a, b)))
def test_snells_law(self): n_out = 1.2 n_in = 2.0 d_out = NondispersiveCurve(n_out) d_in = NondispersiveCurve(n_in) d_coating = NondispersiveCurve(1.4) theta_B = numpy.arctan2(n_in, n_out) print("Brewsters angle:", theta_B * 180 / numpy.pi) y = numpy.sin(theta_B) z = numpy.cos(theta_B) #angle inside dielectric (for transmitted ray) theta_inside = numpy.arcsin(n_out * numpy.sin(theta_B) / n_in) trans_direction = norm( (0.0, numpy.sin(theta_inside), numpy.cos(theta_inside))) ###input ray is directed into object ray_in = Ray(origin=(0.0, -y, -z), direction=(0.0, y, z), E_vector=(0.0, 1.0, 0.0), E1_amp=(1.0 + 1.0j), E2_amp=(0.0 + 0.0j), refractive_index=n_out) print(ray_in.wavelength_idx) mat = CoatedDispersiveMaterial(dispersion_inside=d_in, dispersion_outside=d_out, coating_thickness=0.1, dispersion_coating=d_coating, reflection_threshold=0.01, transmission_threshold=0.01) wavelens = numpy.array([0.78], 'd') mat.wavelengths = wavelens out = RayCollection(8) ray_idx = 123 point = (0.0, 0.0, 0.0) normal = (0.0, 0.0, -1.0) tangent = (0.0, -1.0, 0.0) P_in = ray_power(ray_in) mat.eval_child_ray(ray_in, ray_idx, point, normal, tangent, out) self.assertEqual(len(out), 2) refl_pow = ray_power(out[0]) trans_pow = ray_power(out[1]) #self.assertAlmostEquals(0.0, refl_pow) #self.assertAlmostEquals(refl_pow, out[0].power) #self.assertAlmostEquals(P_in, trans_pow) ###check relfected ray direction self.assertAlmostEqual( abs( dotprod(norm(subvv(ray_in.direction, out[0].direction)), normal)), 1) ###check transmitted ray direction self.assertAlmostEqual(abs(dotprod(out[1].direction, trans_direction)), 1)
def test_brewster_angle(self): n_out = 1.2 n_in = 2.0 theta_B = numpy.arctan2(n_in, n_out) print("Brewsters angle:", theta_B * 180 / numpy.pi) y = numpy.sin(theta_B) z = numpy.cos(theta_B) #angle inside dielectric (for transmitted ray) theta_inside = numpy.arcsin(n_out * numpy.sin(theta_B) / n_in) print("Internal angle:", theta_inside * 180 / numpy.pi) trans_direction = norm( (0.0, numpy.sin(theta_inside), numpy.cos(theta_inside))) ###input ray is directed into object ray_in = Ray(origin=(0.0, -y, -z), direction=(0.0, y, z), E_vector=(0.0, 1.0, 0.0), E1_amp=(1.0 + 1.0j), E2_amp=(0.0 + 0.0j), refractive_index=n_out) mat = SingleLayerCoatedMaterial(thickness=0.1, n_coating=1.5, n_inside=n_in, n_outside=n_out, reflection_threshold=-0.01, transmission_threshold=-0.01) mat.wavelengths = numpy.array([0.78]) out = RayCollection(8) ray_idx = 123 point = (0.0, 0.0, 0.0) normal = (0.0, 0.0, -1.0) tangent = (0.0, -1.0, 0.0) P_in = ray_power(ray_in) mat.eval_child_ray(ray_in, ray_idx, point, normal, tangent, out) self.assertEqual(len(out), 2) refl_pow = ray_power(out[0]) trans_pow = ray_power(out[1]) #self.assertAlmostEquals(0.0, refl_pow) #self.assertAlmostEquals(refl_pow, out[0].power) #self.assertAlmostEquals(P_in, trans_pow) ###check relfected ray direction self.assertAlmostEqual( abs( dotprod(norm(subvv(ray_in.direction, out[0].direction)), normal)), 1) dir_out = out[1].direction theta_trans = 180 * numpy.arctan2(dir_out[2], dir_out[1]) / numpy.pi print("Transmitted angle:", theta_trans) ###check transmitted ray direction self.assertAlmostEqual(abs(dotprod(out[1].direction, trans_direction)), 1)