예제 #1
0
def spwen30(sigma, cts):
    ''' 
  Wendland 3-D C0 covariance function. 
  
  Parameters
  ----------
  sigma [mm] : Standard deviation of displacements
  cts [yr] : Characteristic time-scale
  '''
    return gauss.gpiso(rbf.basis.spwen30, (0.0, sigma**2, cts), dim=1)
예제 #2
0
def mat32(sigma, cts):
    ''' 
  Matern covariance function with nu=3/2
  
  Parameters
  ----------
  sigma [mm] : Standard deviation of displacements
  cts [yr] : Characteristic time-scale
  '''
    return gauss.gpiso(rbf.basis.mat32, (0.0, sigma**2, cts), dim=1)
예제 #3
0
def mat32(sigma,cts):
  ''' 
  Matern covariance function with nu=3/2
  
  Parameters
  ----------
  sigma [mm] : Standard deviation of displacements
  cts [yr] : Characteristic time-scale
  '''
  return gauss.gpiso(rbf.basis.mat32,(0.0,sigma**2,cts),dim=1)
예제 #4
0
def spwen30(sigma,cts):
  ''' 
  Wendland 3-D C0 covariance function. 
  
  Parameters
  ----------
  sigma [mm] : Standard deviation of displacements
  cts [yr] : Characteristic time-scale
  '''
  return gauss.gpiso(rbf.basis.spwen30,(0.0,sigma**2,cts),dim=1)
예제 #5
0
파일: gauss.a.py 프로젝트: soltesz-lab/RBF
import logging
from rbf.basis import se
from rbf.gauss import gpiso
logging.basicConfig(level=logging.DEBUG)
np.random.seed(1)

y = np.linspace(-7.5,7.5,25) # observation points
x = np.linspace(-7.5,7.5,1000) # interpolation points
u_true = np.exp(-0.3*np.abs(x))*np.sin(x)  # true signal
sigma = 0.1*np.ones(25) # observation uncertainty
# noisy observations of the signal
d = np.exp(-0.3*np.abs(y))*np.sin(y) + np.random.normal(0.0,sigma)
# form a prior Gaussian process which has a squared exponential
# covariance function (rbf.basis.se), 0.0 for the mean, 1.0 for the
# standard deviation, and 1.0 for the characteristic length scale.
gp = gpiso(se, (0.0, 1.0, 1.0)) 
sample = gp.sample(x[:,None]) # generate random sample
mean,std = gp(x[:,None]) # find the mean and standard dev. at x
gp_cond = gp.condition(y[:,None],d,sigma=sigma) # condition with data
sample_cond = gp_cond.sample(x[:,None]) 
mean_cond,std_cond = gp_cond(x[:,None])  

## Plotting
#####################################################################
fig,axs = plt.subplots(2,1,figsize=(6,6))
ax = axs[0]
ax.tick_params(labelsize=10)
ax.set_title('Prior Gaussian Process',fontsize=10)
ax.plot(x,mean,'b-',label='mean')
ax.fill_between(x,mean-std,mean+std,color='b',
                alpha=0.2,edgecolor='none',label='standard deviation')
예제 #6
0
# matrices. We can perform Gaussian process regression on large
# datasets with this choice of prior, provided that the lengthscale of
# the prior is much less than the size of the domain (which is not
# true for this demo)
basis = spwen32

# define hyperparameters for the prior. Tune these parameters to get a
# satisfactory interpolant. These can also be chosen with maximum
# likelihood methods.
prior_mean = 0.0
prior_sigma = 1.0
prior_lengthscale = 0.8  # this controls the sparsity

# create the prior Gaussian process
params = (prior_mean, prior_sigma, prior_lengthscale)
prior_gp = gpiso(basis, params)
# add a first order polynomial to the prior to make it suitable for
# data with linear trends
prior_gp += gppoly(1)

# condition the prior on the observations, creating a new Gaussian
# process for the posterior.
posterior_gp = prior_gp.condition(xobs, uobs, sigma=sobs)

# differentiate the posterior with respect to x
derivative_gp = posterior_gp.differentiate((1, 0))

# evaluate the posterior and posterior derivative at the interpolation
# points. calling the GaussianProcess instances will return their mean
# and standard deviation at the provided points.
post_mean, post_std = posterior_gp(xitp)
예제 #7
0
from rbf.basis import get_r, get_eps, RBF
from rbf.gauss import gpiso
np.random.seed(1)

period = 5.0 
cls = 0.5 # characteristic length scale
var = 1.0 # variance

r = get_r() # get symbolic variables
eps = get_eps()
# create a symbolic expression of the periodic covariance function 
expr = exp(-sin(r*pi/period)**2/eps**2) 
# define a periodic RBF using the symbolic expression
basis = RBF(expr)
# define a Gaussian process using the periodic RBF
gp = gpiso(basis, (0.0, var, cls))
t = np.linspace(-10, 10, 1000)[:,None]
sample = gp.sample(t) # draw a sample
mu,sigma = gp(t) # evaluate mean and std. dev.

# plot the results
fig,ax = plt.subplots(figsize=(6,4))
ax.grid(True)
ax.plot(t[:,0],mu,'b-',label='mean')
ax.fill_between(t[:,0],mu-sigma,mu+sigma,color='b',alpha=0.2,edgecolor='none',label='std. dev.')
ax.plot(t,sample,'k',label='sample')
ax.set_xlim((-10.0,10.0))
ax.set_ylim((-2.5*var,2.5*var))
ax.legend(loc=4,fontsize=10)
ax.tick_params(labelsize=10)
ax.set_xlabel('time',fontsize=10)
예제 #8
0
파일: gauss.a.py 프로젝트: yangxy641x/RBF
def negative_likelihood(params):
    log_variance, log_lengthscale = params
    gp = gpiso('se', (0.0, 10**log_variance, 10**log_lengthscale))
    return -gp.likelihood(y[:, None], d, sigma=sigma)
예제 #9
0
파일: gauss.a.py 프로젝트: yangxy641x/RBF
d = np.exp(-0.3 * np.abs(y)) * np.sin(y) + np.random.normal(0.0, sigma)


# form a prior Gaussian process which has a squared exponential covariance
# function (rbf.basis.se), 0.0 for the mean, and variance and lengthscales that
# are chosen with maximum likelihood. The variance and lengthscale are given
# positivity contraints by optimizing them in log space
def negative_likelihood(params):
    log_variance, log_lengthscale = params
    gp = gpiso('se', (0.0, 10**log_variance, 10**log_lengthscale))
    return -gp.likelihood(y[:, None], d, sigma=sigma)


log_variance, log_lengthscale = minimize(negative_likelihood, [0.0, 0.0]).x
# create a prior GaussianProcess using the most likely variance and lengthscale
gp_prior = gpiso('se', (0.0, 10**log_variance, 10**log_lengthscale))
# generate a sample of the prior
sample_prior = gp_prior.sample(x[:, None])
# find the mean and standard deviation of the prior
mean_prior, std_prior = gp_prior(x[:, None])
# condition the prior on the observations
gp_post = gp_prior.condition(y[:, None], d, sigma=sigma)
sample_post = gp_post.sample(x[:, None])
mean_post, std_post = gp_post(x[:, None])

## Plotting
#####################################################################
fig, axs = plt.subplots(2, 1, figsize=(6, 6))
ax = axs[0]
ax.grid(ls=':')
ax.tick_params(labelsize=10)
예제 #10
0
파일: gauss.i.py 프로젝트: yangxy641x/RBF
from rbf.gauss import gpiso
from rbf.basis import spwen12
import logging
logging.basicConfig(level=logging.DEBUG)
np.random.seed(1)

# create synthetic data
n = 10000
y = np.linspace(-20.0, 20.0, n) # observation points
sigma = 0.5*np.ones(n)
d = np.exp(-0.3*np.abs(y))*np.sin(y) + np.random.normal(0.0, sigma)
# evaluate the output at a subset of the observation points
x = np.linspace(-20.0, 20.0, 1000) # interpolation points
u_true = np.exp(-0.3*np.abs(x))*np.sin(x)  # true signal
# create a sparse GP
gp = gpiso(spwen12, (0.0, 1.0, 4.0)) 
# condition with the observations
gpc = gp.condition(y[:,None], d, sigma)
# find the mean and std of the conditioned GP. Chunk size controls the
# trade off between speed and memory consumption. It should be tuned
# by the user.
u, us = gpc.meansd(x[:,None], chunk_size=1000)
fig,ax = plt.subplots()
ax.plot(x, u_true, 'k-', label='true signal')
ax.plot(y, d, 'k.', alpha=0.1, mec='none', label='observations')
ax.plot(x, u, 'b-', label='post. mean')
ax.fill_between(x, u-us, u+us, color='b', alpha=0.2, label='post. std. dev.')
ax.set_xlim((-20.0, 20.0))
ax.set_ylim((-2.0, 2.0))
ax.legend(loc=2, fontsize=10)
plt.show()
예제 #11
0
''' 
This script demonstrates how to make a custom *GaussianProcess* by 
combining *GaussianProcess* instances. The resulting Gaussian process 
has two distinct length-scales.
'''
import numpy as np
import matplotlib.pyplot as plt
from rbf.basis import se
from rbf.gauss import gpiso
np.random.seed(1)

dx = np.linspace(0.0, 5.0, 1000)[:, None]
x = np.linspace(-5, 5.0, 1000)[:, None]
gp_long = gpiso(se, (0.0, 1.0, 2.0))
gp_short = gpiso(se, (0.0, 0.5, 0.25))
gp = gp_long + gp_short
# compute the autocovariances
acov_long = gp_long.covariance(dx, [[0.0]])
acov_short = gp_short.covariance(dx, [[0.0]])
acov = gp.covariance(dx, [[0.0]])
# draw 3 samples
sample = gp.sample(x)
# mean and uncertainty of the new gp
mean, sigma = gp(x)
# plot the autocovariance functions
fig, axs = plt.subplots(2, 1, figsize=(6, 6))
axs[0].plot(dx, acov_long, 'r--', label='long component')
axs[0].plot(dx, acov_short, 'b--', label='short component')
axs[0].plot(dx, acov, 'k-', label='sum')
axs[0].set_xlabel('$\mathregular{\Delta x}$', fontsize=10)
axs[0].set_ylabel('auto-covariance', fontsize=10)
예제 #12
0
def spwen32(sigma,cls):
  ''' 
  Sparse Wendland space covariance function 
  '''
  return gauss.gpiso(rbf.basis.spwen32,(0.0,sigma**2,cls),dim=2)
예제 #13
0
def mat52(sigma,cls):
  ''' 
  Matern space covariance function with nu=5/2
  '''
  return gauss.gpiso(rbf.basis.mat52,(0.0,sigma**2,cls),dim=2)