map_times.append(datetime.datetime(2013, 5, 13, 15, 5)) map_times.append(datetime.datetime(2013, 5, 13, 16, 5)) for kk, map_sTime in enumerate(map_times): plt_inx = kk + 1 ax0 = fig.add_subplot(3, 1, plt_inx) map_eTime = map_sTime + datetime.timedelta(minutes=15) print '' print '################################################################################' print 'Plotting RBN Map: {0} - {1}'.format( map_sTime.strftime('%d %b %Y %H%M UT'), map_eTime.strftime('%d %b %Y %H%M UT')) rbn_df = rbn_lib.read_rbn(map_sTime, map_eTime, data_dir='data/rbn') # Figure out how many records properly geolocated. good_loc = rbn_df.dropna( subset=['dx_lat', 'dx_lon', 'de_lat', 'de_lon']) good_count_map = good_loc['callsign'].count() total_count_map = len(rbn_df) good_pct_map = float(good_count_map) / total_count_map * 100. good_count += good_count_map total_count += total_count_map print 'Geolocation success: {0:d}/{1:d} ({2:.1f}%)'.format( good_count_map, total_count_map, good_pct_map)
#!/usr/bin/env python import os import datetime import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt import rbn_lib sTime = datetime.datetime(2010, 11, 19) eTime = datetime.datetime(2010, 11, 19) data_dir = os.path.join('data', 'rbn') rbn_df = rbn_lib.read_rbn(sTime, eTime, data_dir=data_dir) import ipdb ipdb.set_trace() fig = plt.figure(figsize=(10, 8)) ax = fig.add_subplot(111) rbn_lib.rbn_map_plot(rbn_df, legend=False, ax=ax) outfile = os.path.join('output', 'rbn', 'rbn_test.png') fig.savefig(outfile, bbox_inches='tight')