예제 #1
0
파일: product.py 프로젝트: pp1565156/RBniCS
def _product(thetas: ThetaType, operators: (array_of(DelayedLinearSolver),
                                            list_of(DelayedLinearSolver)),
             thetas2: None):
    output = None
    assert len(thetas) == len(operators)
    for (theta, operator) in zip(thetas, operators):
        assert isinstance(operator._rhs,
                          (AbstractParametrizedTensorFactory, DelayedProduct))
        if isinstance(operator._rhs, AbstractParametrizedTensorFactory):
            rhs = DelayedProduct(theta)
            rhs *= operator._rhs
        elif isinstance(operator._rhs, DelayedProduct):
            assert len(operator._rhs._args) is 3
            assert operator._rhs._args[0] == -1
            assert isinstance(operator._rhs._args[1],
                              AbstractParametrizedTensorFactory)
            rhs = DelayedProduct(theta * operator._rhs._args[0])
            rhs *= operator._rhs._args[1]
            rhs *= operator._rhs._args[2]
        else:
            raise TypeError("Invalid rhs")
        if output is None:
            output = DelayedLinearSolver(operator._lhs, operator._solution,
                                         DelayedSum(rhs), operator._bcs)
            output.set_parameters(output._parameters)
        else:
            assert output._lhs is operator._lhs
            assert output._solution is operator._solution
            output._rhs += rhs
            assert output._bcs is operator._bcs
            assert output._parameters is operator._parameters
    output = output.solve()
    return ProductOutput(output)
예제 #2
0
 def solve(self, rhs: object):
     problem = self.problem
     args = (problem._riesz_solve_inner_product,
             problem._riesz_solve_storage, rhs,
             problem._riesz_solve_homogeneous_dirichlet_bc)
     if not self.delay:
         solver = LinearSolver(*args)
         solver.set_parameters(problem._linear_solver_parameters)
         return solver.solve()
     else:
         solver = DelayedLinearSolver(*args)
         solver.set_parameters(problem._linear_solver_parameters)
         return solver
예제 #3
0
 def load(self, directory, filename):
     if self._type != "empty":  # avoid loading multiple times
         if self._type in ("basis_functions_matrix", "functions_list"):
             delayed_functions = self._content[self._type]
             it = NonAffineExpansionStorageContent_Iterator(
                 delayed_functions,
                 flags=["c_index", "multi_index", "refs_ok"],
                 op_flags=["readonly"])
             while not it.finished:
                 if isinstance(delayed_functions[it.multi_index],
                               DelayedFunctionsList):
                     assert self._type == "functions_list"
                     if len(
                             delayed_functions[it.multi_index]
                     ) > 0:  # ... unless it is an empty FunctionsList
                         return False
                 elif isinstance(delayed_functions[it.multi_index],
                                 DelayedBasisFunctionsMatrix):
                     assert self._type == "basis_functions_matrix"
                     if sum(
                             delayed_functions[it.multi_index].
                             _component_name_to_basis_component_length.
                             values()
                     ) > 0:  # ... unless it is an empty BasisFunctionsMatrix
                         return False
                 else:
                     raise TypeError("Invalid delayed functions")
                 it.iternext()
         else:
             return False
     # Get full directory name
     full_directory = Folders.Folder(os.path.join(str(directory), filename))
     # Detect trivial case
     assert TypeIO.exists_file(full_directory, "type")
     imported_type = TypeIO.load_file(full_directory, "type")
     self._type = imported_type
     assert self._type in ("basis_functions_matrix", "empty",
                           "error_estimation_operators_11",
                           "error_estimation_operators_21",
                           "error_estimation_operators_22",
                           "functions_list", "operators")
     if self._type in ("basis_functions_matrix", "functions_list"):
         # Load delayed functions
         assert self._type in self._content
         delayed_functions = self._content[self._type]
         it = NonAffineExpansionStorageContent_Iterator(
             delayed_functions, flags=["c_index", "multi_index", "refs_ok"])
         while not it.finished:
             delayed_function = delayed_functions[it.multi_index]
             delayed_function.load(full_directory,
                                   "delayed_functions_" + str(it.index))
             it.iternext()
     elif self._type == "empty":
         pass
     elif self._type in ("error_estimation_operators_11",
                         "error_estimation_operators_21",
                         "error_estimation_operators_22"):
         # Load delayed functions
         assert "delayed_functions" not in self._content
         self._content["delayed_functions"] = [
             NonAffineExpansionStorageContent_Base(self._shape[0],
                                                   dtype=object),
             NonAffineExpansionStorageContent_Base(self._shape[1],
                                                   dtype=object)
         ]
         for (index, delayed_functions) in enumerate(
                 self._content["delayed_functions"]):
             it = NonAffineExpansionStorageContent_Iterator(
                 delayed_functions, flags=["c_index", "refs_ok"])
             while not it.finished:
                 assert DelayedFunctionsTypeIO.exists_file(
                     full_directory, "delayed_functions_" + str(index) +
                     "_" + str(it.index) + "_type")
                 delayed_function_type = DelayedFunctionsTypeIO.load_file(
                     full_directory, "delayed_functions_" + str(index) +
                     "_" + str(it.index) + "_type")
                 assert DelayedFunctionsProblemNameIO.exists_file(
                     full_directory, "delayed_functions_" + str(index) +
                     "_" + str(it.index) + "_problem_name")
                 delayed_function_problem_name = DelayedFunctionsProblemNameIO.load_file(
                     full_directory, "delayed_functions_" + str(index) +
                     "_" + str(it.index) + "_problem_name")
                 delayed_function_problem = get_problem_from_problem_name(
                     delayed_function_problem_name)
                 assert delayed_function_type in (
                     "DelayedBasisFunctionsMatrix", "DelayedLinearSolver")
                 if delayed_function_type == "DelayedBasisFunctionsMatrix":
                     delayed_function = DelayedBasisFunctionsMatrix(
                         delayed_function_problem.V)
                     delayed_function.init(
                         delayed_function_problem.components)
                 elif delayed_function_type == "DelayedLinearSolver":
                     delayed_function = DelayedLinearSolver()
                 else:
                     raise ValueError("Invalid delayed function")
                 delayed_function.load(
                     full_directory, "delayed_functions_" + str(index) +
                     "_" + str(it.index) + "_content")
                 delayed_functions[it.index] = delayed_function
                 it.iternext()
         # Load inner product
         assert ErrorEstimationInnerProductIO.exists_file(
             full_directory, "inner_product_matrix_problem_name")
         inner_product_matrix_problem_name = ErrorEstimationInnerProductIO.load_file(
             full_directory, "inner_product_matrix_problem_name")
         inner_product_matrix_problem = get_problem_from_problem_name(
             inner_product_matrix_problem_name)
         inner_product_matrix_reduced_problem = get_reduced_problem_from_problem(
             inner_product_matrix_problem)
         self._content[
             "inner_product_matrix"] = inner_product_matrix_reduced_problem._error_estimation_inner_product
         # Recompute shape
         assert "delayed_functions_shape" not in self._content
         self._content["delayed_functions_shape"] = DelayedTransposeShape(
             (self._content["delayed_functions"][0][0],
              self._content["delayed_functions"][1][0]))
         # Prepare precomputed slices
         self._precomputed_slices.clear()
         self._prepare_trivial_precomputed_slice()
     elif self._type == "empty":
         pass
     elif self._type == "operators":
         # Load truth content
         assert "truth_operators" not in self._content
         self._content[
             "truth_operators"] = NonAffineExpansionStorageContent_Base(
                 self._shape, dtype=object)
         it = NonAffineExpansionStorageContent_Iterator(
             self._content["truth_operators"],
             flags=["c_index", "multi_index", "refs_ok"])
         while not it.finished:
             assert TruthContentItemIO.exists_file(
                 full_directory,
                 "truth_operator_" + str(it.index) + "_type")
             operator_type = TruthContentItemIO.load_file(
                 full_directory,
                 "truth_operator_" + str(it.index) + "_type")
             assert operator_type in ("NumericForm",
                                      "ParametrizedTensorFactory")
             if operator_type == "NumericForm":
                 assert TruthContentItemIO.exists_file(
                     full_directory, "truth_operator_" + str(it.index))
                 value = TruthContentItemIO.load_file(
                     full_directory, "truth_operator_" + str(it.index))
                 self._content["truth_operators"][
                     it.multi_index] = NumericForm(value)
             elif operator_type == "ParametrizedTensorFactory":
                 assert TruthContentItemIO.exists_file(
                     full_directory, "truth_operator_" + str(it.index))
                 (problem_name, term, index) = TruthContentItemIO.load_file(
                     full_directory, "truth_operator_" + str(it.index))
                 truth_problem = get_problem_from_problem_name(problem_name)
                 self._content["truth_operators"][
                     it.multi_index] = truth_problem.operator[term][index]
             else:
                 raise ValueError("Invalid operator type")
             it.iternext()
         assert "truth_operators_as_expansion_storage" not in self._content
         self._prepare_truth_operators_as_expansion_storage()
         # Load basis functions content
         assert BasisFunctionsContentLengthIO.exists_file(
             full_directory, "basis_functions_length")
         basis_functions_length = BasisFunctionsContentLengthIO.load_file(
             full_directory, "basis_functions_length")
         assert basis_functions_length in (0, 1, 2)
         assert "basis_functions" not in self._content
         self._content["basis_functions"] = list()
         for index in range(basis_functions_length):
             assert BasisFunctionsProblemNameIO.exists_file(
                 full_directory,
                 "basis_functions_" + str(index) + "_problem_name")
             basis_functions_problem_name = BasisFunctionsProblemNameIO.load_file(
                 full_directory,
                 "basis_functions_" + str(index) + "_problem_name")
             assert BasisFunctionsProblemNameIO.exists_file(
                 full_directory,
                 "basis_functions_" + str(index) + "_components_name")
             basis_functions_components_name = BasisFunctionsProblemNameIO.load_file(
                 full_directory,
                 "basis_functions_" + str(index) + "_components_name")
             basis_functions_problem = get_problem_from_problem_name(
                 basis_functions_problem_name)
             basis_functions_reduced_problem = get_reduced_problem_from_problem(
                 basis_functions_problem)
             basis_functions = basis_functions_reduced_problem.basis_functions
             if basis_functions_components_name != basis_functions_problem.components:
                 basis_functions = basis_functions[
                     basis_functions_components_name]
             self._content["basis_functions"].append(basis_functions)
         # Recompute shape
         self._content["basis_functions_shape"] = DelayedTransposeShape(
             self._content["basis_functions"])
         # Reset precomputed slices
         self._precomputed_slices.clear()
         self._prepare_trivial_precomputed_slice()
     else:
         raise ValueError("Invalid type")
     return True