예제 #1
0
def train_net(args,
              ctx,
              pretrained,
              epoch,
              prefix,
              begin_epoch,
              end_epoch,
              lr=0.001,
              lr_step='5'):
    # setup config
    #init_config()
    #print(config)
    # setup multi-gpu

    input_batch_size = config.TRAIN.BATCH_IMAGES * len(ctx)

    # print config
    logger.info(pprint.pformat(config))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in args.image_set.split('+')]
    roidbs = [
        load_gt_roidb(args.dataset,
                      image_set,
                      args.root_path,
                      args.dataset_path,
                      flip=not args.no_flip) for image_set in image_sets
    ]
    #roidb = merge_roidb(roidbs)
    #roidb = filter_roidb(roidb)
    roidb = roidbs[0]

    # load symbol
    #sym = eval('get_' + args.network + '_train')(num_classes=config.NUM_CLASSES, num_anchors=config.NUM_ANCHORS)
    #feat_sym = sym.get_internals()['rpn_cls_score_output']
    #train_data = AnchorLoader(feat_sym, roidb, batch_size=input_batch_size, shuffle=not args.no_shuffle,
    #                          ctx=ctx, work_load_list=args.work_load_list,
    #                          feat_stride=config.RPN_FEAT_STRIDE, anchor_scales=config.ANCHOR_SCALES,
    #                          anchor_ratios=config.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING)

    # load and initialize params
    sym = None
    if len(pretrained) == 0:
        arg_params = {}
        aux_params = {}
    else:
        logger.info('loading %s,%d' % (pretrained, epoch))
        sym, arg_params, aux_params = mx.model.load_checkpoint(
            pretrained, epoch)
        #arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        #for k in ['rpn_conv_3x3', 'rpn_cls_score', 'rpn_bbox_pred', 'cls_score', 'bbox_pred']:
        #  _k = k+"_weight"
        #  if _k in arg_shape_dict:
        #    v = 0.001 if _k.startswith('bbox_') else 0.01
        #    arg_params[_k] = mx.random.normal(0, v, shape=arg_shape_dict[_k])
        #    print('init %s with normal %.5f'%(_k,v))
        #  _k = k+"_bias"
        #  if _k in arg_shape_dict:
        #    arg_params[_k] = mx.nd.zeros(shape=arg_shape_dict[_k])
        #    print('init %s with zero'%(_k))

    sym = eval('get_' + args.network + '_train')(sym)
    feat_sym = []
    for stride in config.RPN_FEAT_STRIDE:
        feat_sym.append(
            sym.get_internals()['face_rpn_cls_score_stride%s_output' % stride])

    train_data = CropLoader(feat_sym,
                            roidb,
                            batch_size=input_batch_size,
                            shuffle=not args.no_shuffle,
                            ctx=ctx,
                            work_load_list=args.work_load_list)

    # infer max shape
    max_data_shape = [('data', (1, 3, max([v[1] for v in config.SCALES]),
                                max([v[1] for v in config.SCALES])))]
    #max_data_shape = [('data', (1, 3, max([v[1] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (1, roidb[0]['max_num_boxes'], 5)))
    logger.info('providing maximum shape %s %s' %
                (max_data_shape, max_label_shape))

    # infer shape
    data_shape_dict = dict(train_data.provide_data + train_data.provide_label)
    arg_shape, out_shape, aux_shape = sym.infer_shape(**data_shape_dict)
    arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
    out_shape_dict = dict(zip(sym.list_outputs(), out_shape))
    aux_shape_dict = dict(zip(sym.list_auxiliary_states(), aux_shape))
    logger.info('output shape %s' % pprint.pformat(out_shape_dict))

    for k, v in arg_shape_dict.items():
        if k.find('upsampling') >= 0:
            print('initializing upsampling_weight', k)
            arg_params[k] = mx.nd.zeros(shape=v)
            init = mx.init.Initializer()
            init._init_bilinear(k, arg_params[k])
            #print(args[k])

    # check parameter shapes
    #for k in sym.list_arguments():
    #    if k in data_shape_dict:
    #        continue
    #    assert k in arg_params, k + ' not initialized'
    #    assert arg_params[k].shape == arg_shape_dict[k], \
    #        'shape inconsistent for ' + k + ' inferred ' + str(arg_shape_dict[k]) + ' provided ' + str(arg_params[k].shape)
    #for k in sym.list_auxiliary_states():
    #    assert k in aux_params, k + ' not initialized'
    #    assert aux_params[k].shape == aux_shape_dict[k], \
    #        'shape inconsistent for ' + k + ' inferred ' + str(aux_shape_dict[k]) + ' provided ' + str(aux_params[k].shape)

    fixed_param_prefix = config.FIXED_PARAMS
    # create solver
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]
    fixed_param_names = get_fixed_params(sym, fixed_param_prefix)
    print('fixed', fixed_param_names, file=sys.stderr)
    mod = Module(sym,
                 data_names=data_names,
                 label_names=label_names,
                 logger=logger,
                 context=ctx,
                 work_load_list=args.work_load_list,
                 fixed_param_names=fixed_param_names)

    # metric
    eval_metrics = mx.metric.CompositeEvalMetric()
    mid = 0
    for m in range(len(config.RPN_FEAT_STRIDE)):
        stride = config.RPN_FEAT_STRIDE[m]
        #mid = m*MSTEP
        _metric = metric.RPNAccMetric(pred_idx=mid,
                                      label_idx=mid + 1,
                                      name='RPNAcc_s%s' % stride)
        eval_metrics.add(_metric)
        mid += 2
        #_metric = metric.RPNLogLossMetric(pred_idx=mid, label_idx=mid+1)
        #eval_metrics.add(_metric)

        _metric = metric.RPNL1LossMetric(loss_idx=mid,
                                         weight_idx=mid + 1,
                                         name='RPNL1Loss_s%s' % stride)
        eval_metrics.add(_metric)
        mid += 2
        if config.FACE_LANDMARK:
            _metric = metric.RPNL1LossMetric(loss_idx=mid,
                                             weight_idx=mid + 1,
                                             name='RPNLandMarkL1Loss_s%s' %
                                             stride)
            eval_metrics.add(_metric)
            mid += 2
        if config.HEAD_BOX:
            _metric = metric.RPNAccMetric(pred_idx=mid,
                                          label_idx=mid + 1,
                                          name='RPNAcc_head_s%s' % stride)
            eval_metrics.add(_metric)
            mid += 2
            #_metric = metric.RPNLogLossMetric(pred_idx=mid, label_idx=mid+1)
            #eval_metrics.add(_metric)

            _metric = metric.RPNL1LossMetric(loss_idx=mid,
                                             weight_idx=mid + 1,
                                             name='RPNL1Loss_head_s%s' %
                                             stride)
            eval_metrics.add(_metric)
            mid += 2

    # callback
    #means = np.tile(np.array(config.TRAIN.BBOX_MEANS), config.NUM_CLASSES)
    #stds = np.tile(np.array(config.TRAIN.BBOX_STDS), config.NUM_CLASSES)
    #epoch_end_callback = callback.do_checkpoint(prefix)
    epoch_end_callback = None
    # decide learning rate
    #base_lr = lr
    #lr_factor = 0.1
    #lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff)))

    lr_epoch = [int(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr_iters = [
        int(epoch * len(roidb) / input_batch_size) for epoch in lr_epoch_diff
    ]

    lr_steps = []
    if len(lr_iters) == 5:
        factors = [0.5, 0.5, 0.4, 0.1, 0.1]
        for i in range(5):
            lr_steps.append((lr_iters[i], factors[i]))
    elif len(lr_iters) == 8:  #warmup
        for li in lr_iters[0:5]:
            lr_steps.append((li, 1.5849))
        for li in lr_iters[5:]:
            lr_steps.append((li, 0.1))
    else:
        for li in lr_iters:
            lr_steps.append((li, 0.1))
    #lr_steps = [ (20,0.1), (40, 0.1) ] #XXX

    end_epoch = 10000
    logger.info('lr %f lr_epoch_diff %s lr_steps %s' %
                (lr, lr_epoch_diff, lr_steps))
    # optimizer
    opt = optimizer.SGD(learning_rate=lr,
                        momentum=0.9,
                        wd=0.0005,
                        rescale_grad=1.0 / len(ctx),
                        clip_gradient=None)
    initializer = mx.init.Xavier()
    #initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="out", magnitude=2) #resnet style

    train_data = mx.io.PrefetchingIter(train_data)

    _cb = mx.callback.Speedometer(train_data.batch_size,
                                  frequent=args.frequent,
                                  auto_reset=False)
    global_step = [0]

    def save_model(epoch):
        arg, aux = mod.get_params()
        all_layers = mod.symbol.get_internals()
        outs = []
        for stride in config.RPN_FEAT_STRIDE:
            num_anchors = config.RPN_ANCHOR_CFG[str(stride)]['NUM_ANCHORS']
            _name = 'face_rpn_cls_score_stride%d_output' % stride
            rpn_cls_score = all_layers[_name]

            # prepare rpn data
            rpn_cls_score_reshape = mx.symbol.Reshape(
                data=rpn_cls_score,
                shape=(0, 2, -1, 0),
                name="face_rpn_cls_score_reshape_stride%d" % stride)

            rpn_cls_prob = mx.symbol.SoftmaxActivation(
                data=rpn_cls_score_reshape,
                mode="channel",
                name="face_rpn_cls_prob_stride%d" % stride)
            rpn_cls_prob_reshape = mx.symbol.Reshape(
                data=rpn_cls_prob,
                shape=(0, 2 * num_anchors, -1, 0),
                name='face_rpn_cls_prob_reshape_stride%d' % stride)
            _name = 'face_rpn_bbox_pred_stride%d_output' % stride
            rpn_bbox_pred = all_layers[_name]
            outs.append(rpn_cls_prob_reshape)
            outs.append(rpn_bbox_pred)
            if config.FACE_LANDMARK:
                _name = 'face_rpn_landmark_pred_stride%d_output' % stride
                rpn_landmark_pred = all_layers[_name]
                outs.append(rpn_landmark_pred)
        _sym = mx.sym.Group(outs)
        mx.model.save_checkpoint(prefix, epoch, _sym, arg, aux)

    def _batch_callback(param):
        #global global_step
        _cb(param)
        global_step[0] += 1
        mbatch = global_step[0]
        for step in lr_steps:
            if mbatch == step[0]:
                opt.lr *= step[1]
                print('lr change to',
                      opt.lr,
                      ' in batch',
                      mbatch,
                      file=sys.stderr)
                break

        if mbatch == lr_steps[-1][0]:
            print('saving final checkpoint', mbatch, file=sys.stderr)
            save_model(0)
            #arg, aux = mod.get_params()
            #mx.model.save_checkpoint(prefix, 99, mod.symbol, arg, aux)
            sys.exit(0)

    if args.checkpoint is not None:
        _, arg_params, aux_params = mx.model.load_checkpoint(
            args.checkpoint, 0)

    # train
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=checkpoint_callback('model/testR50'),
            batch_end_callback=_batch_callback,
            kvstore=args.kvstore,
            optimizer=opt,
            initializer=initializer,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
예제 #2
0
def train_net(args,
              ctx,
              pretrained,
              epoch,
              prefix,
              begin_epoch,
              end_epoch,
              lr=0.001,
              lr_step='5'):
    # setup config
    config.TRAIN.BATCH_IMAGES = 1
    config.TRAIN.BATCH_ROIS = 128
    config.TRAIN.END2END = True
    config.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED = True

    # load symbol
    sym = eval('get_' + args.network + '_train')(
        num_classes=config.NUM_CLASSES, num_anchors=config.NUM_ANCHORS)
    feat_sym = sym.get_internals()['rpn_cls_score_output']

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    logger.info(pprint.pformat(config))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in args.image_set.split('+')]
    roidbs = [
        load_gt_roidb(args.dataset,
                      image_set,
                      args.root_path,
                      args.dataset_path,
                      flip=not args.no_flip) for image_set in image_sets
    ]
    roidb = merge_roidb(roidbs)
    roidb = filter_roidb(roidb)

    # load training data
    train_data = AnchorLoader(feat_sym,
                              roidb,
                              batch_size=input_batch_size,
                              shuffle=not args.no_shuffle,
                              ctx=ctx,
                              work_load_list=args.work_load_list,
                              feat_stride=config.RPN_FEAT_STRIDE,
                              anchor_scales=config.ANCHOR_SCALES,
                              anchor_ratios=config.ANCHOR_RATIOS,
                              aspect_grouping=config.TRAIN.ASPECT_GROUPING)

    # infer max shape
    max_data_shape = [('data', (input_batch_size, 3,
                                max([v[0] for v in config.SCALES]),
                                max([v[1] for v in config.SCALES])))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (input_batch_size, 100, 5)))
    logger.info('providing maximum shape %s %s' %
                (max_data_shape, max_label_shape))

    # infer shape
    data_shape_dict = dict(train_data.provide_data + train_data.provide_label)
    arg_shape, out_shape, aux_shape = sym.infer_shape(**data_shape_dict)
    arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
    out_shape_dict = dict(zip(sym.list_outputs(), out_shape))
    aux_shape_dict = dict(zip(sym.list_auxiliary_states(), aux_shape))
    logger.info('output shape %s' % pprint.pformat(out_shape_dict))

    # load and initialize params
    if args.resume:
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        arg_params['rpn_conv_3x3_weight'] = mx.random.normal(
            0, 0.01, shape=arg_shape_dict['rpn_conv_3x3_weight'])
        arg_params['rpn_conv_3x3_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['rpn_conv_3x3_bias'])
        arg_params['rpn_cls_score_weight'] = mx.random.normal(
            0, 0.01, shape=arg_shape_dict['rpn_cls_score_weight'])
        arg_params['rpn_cls_score_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['rpn_cls_score_bias'])
        arg_params['rpn_bbox_pred_weight'] = mx.random.normal(
            0, 0.01, shape=arg_shape_dict['rpn_bbox_pred_weight'])
        arg_params['rpn_bbox_pred_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['rpn_bbox_pred_bias'])
        arg_params['cls_score_weight'] = mx.random.normal(
            0, 0.01, shape=arg_shape_dict['cls_score_weight'])
        arg_params['cls_score_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['cls_score_bias'])
        arg_params['bbox_pred_weight'] = mx.random.normal(
            0, 0.001, shape=arg_shape_dict['bbox_pred_weight'])
        arg_params['bbox_pred_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['bbox_pred_bias'])

    # check parameter shapes
    for k in sym.list_arguments():
        if k in data_shape_dict:
            continue
        assert k in arg_params, k + ' not initialized'
        assert arg_params[k].shape == arg_shape_dict[k], \
            'shape inconsistent for ' + k + ' inferred ' + str(arg_shape_dict[k]) + ' provided ' + str(arg_params[k].shape)
    for k in sym.list_auxiliary_states():
        assert k in aux_params, k + ' not initialized'
        assert aux_params[k].shape == aux_shape_dict[k], \
            'shape inconsistent for ' + k + ' inferred ' + str(aux_shape_dict[k]) + ' provided ' + str(aux_params[k].shape)

    # create solver
    fixed_param_prefix = config.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]
    mod = MutableModule(sym,
                        data_names=data_names,
                        label_names=label_names,
                        logger=logger,
                        context=ctx,
                        work_load_list=args.work_load_list,
                        max_data_shapes=max_data_shape,
                        max_label_shapes=max_label_shape,
                        fixed_param_prefix=fixed_param_prefix)

    # decide training params
    # metric
    rpn_eval_metric = metric.RPNAccMetric()
    rpn_cls_metric = metric.RPNLogLossMetric()
    rpn_bbox_metric = metric.RPNL1LossMetric()
    eval_metric = metric.RCNNAccMetric()
    cls_metric = metric.RCNNLogLossMetric()
    bbox_metric = metric.RCNNL1LossMetric()
    eval_metrics = mx.metric.CompositeEvalMetric()
    for child_metric in [
            rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric,
            cls_metric, bbox_metric
    ]:
        eval_metrics.add(child_metric)
    # callback
    batch_end_callback = mx.callback.Speedometer(train_data.batch_size,
                                                 frequent=args.frequent,
                                                 auto_reset=False)
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS), config.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS), config.NUM_CLASSES)
    epoch_end_callback = callback.do_checkpoint(prefix, means, stds)
    # decide learning rate
    base_lr = lr
    lr_factor = 0.1
    lr_epoch = [int(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff
    ]
    logger.info('lr %f lr_epoch_diff %s lr_iters %s' %
                (lr, lr_epoch_diff, lr_iters))
    lr_scheduler = mx.lr_scheduler.MultiFactorScheduler(lr_iters, lr_factor)
    # optimizer
    optimizer_params = {
        'momentum': 0.9,
        'wd': 0.0005,
        'learning_rate': lr,
        'lr_scheduler': lr_scheduler,
        'rescale_grad': (1.0 / batch_size),
        'clip_gradient': 5
    }

    # train
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=args.kvstore,
            optimizer='sgd',
            optimizer_params=optimizer_params,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
예제 #3
0
def train_net(args,
              ctx,
              pretrained,
              epoch,
              prefix,
              begin_epoch,
              end_epoch,
              lr=0.001,
              lr_step='5'):
    # set up logger
    logging.basicConfig()
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    # setup config
    config.TRAIN.BATCH_IMAGES = 1
    config.TRAIN.BATCH_ROIS = 128
    config.TRAIN.END2END = True
    config.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED = True

    # load symbol

    if args.use_global_context or args.use_roi_align:
        sym = eval('get_' + args.network + '_train')(
            num_classes=config.NUM_CLASSES,
            num_anchors=config.NUM_ANCHORS,
            use_global_context=args.use_global_context,
            use_roi_align=args.use_roi_align)
    else:
        sym = eval('get_' + args.network + '_train')(
            num_classes=config.NUM_CLASSES, num_anchors=config.NUM_ANCHORS)

    feat_sym = sym.get_internals()['rpn_cls_score_output']

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    pprint.pprint(config)

    if not args.use_ava_recordio:
        # load dataset and prepare imdb for training
        image_sets = [iset for iset in args.image_set.split('+')]
        roidbs = [
            load_gt_roidb(args.dataset,
                          image_set,
                          args.root_path,
                          args.dataset_path,
                          flip=not args.no_flip) for image_set in image_sets
        ]
        roidb = merge_roidb(roidbs)
        roidb = filter_roidb(roidb)

        # load training data
        train_data = AnchorLoader(
            feat_sym,
            roidb,
            batch_size=input_batch_size,
            shuffle=not args.no_shuffle,
            ctx=ctx,
            work_load_list=args.work_load_list,
            feat_stride=config.RPN_FEAT_STRIDE,
            anchor_scales=config.ANCHOR_SCALES,
            anchor_ratios=config.ANCHOR_RATIOS,
            aspect_grouping=config.TRAIN.ASPECT_GROUPING,
            use_data_augmentation=args.use_data_augmentation)
    else:
        f = open(args.classes_names)
        classes = ['__background__']
        for line in f.readlines():
            classes.append(line.strip().split(' ')[0])

        path_imgidx = args.ava_recordio_name + '.idx'
        path_imgrec = args.ava_recordio_name + '.rec'

        record = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r')  # pylint: disable=redefined-variable-type

        train_data = AnchorLoaderAvaRecordIO(
            feat_sym,
            record,
            classes,
            batch_size=input_batch_size,
            shuffle=not args.no_shuffle,
            ctx=ctx,
            work_load_list=args.work_load_list,
            feat_stride=config.RPN_FEAT_STRIDE,
            anchor_scales=config.ANCHOR_SCALES,
            anchor_ratios=config.ANCHOR_RATIOS,
            aspect_grouping=config.TRAIN.ASPECT_GROUPING,
            use_data_augmentation=args.use_data_augmentation)

    # infer max shape
    max_data_shape = [('data', (input_batch_size, 3,
                                max([v[0] for v in config.SCALES]),
                                max([v[1] for v in config.SCALES])))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (input_batch_size, 100, 5)))
    print('providing maximum shape', max_data_shape, max_label_shape)

    # infer shape
    data_shape_dict = dict(train_data.provide_data + train_data.provide_label)
    arg_shape, out_shape, aux_shape = sym.infer_shape(**data_shape_dict)
    arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
    out_shape_dict = dict(zip(sym.list_outputs(), out_shape))
    aux_shape_dict = dict(zip(sym.list_auxiliary_states(), aux_shape))
    print('output shape')
    pprint.pprint(out_shape_dict)
    print('arg shape')
    #  pprint.pprint(arg_shape_dict)
    # load and initialize params
    if args.resume:
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        arg_params['rpn_conv_3x3_weight'] = mx.random.normal(
            0, 0.01, shape=arg_shape_dict['rpn_conv_3x3_weight'])
        arg_params['rpn_conv_3x3_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['rpn_conv_3x3_bias'])
        arg_params['rpn_cls_score_weight'] = mx.random.normal(
            0, 0.01, shape=arg_shape_dict['rpn_cls_score_weight'])
        arg_params['rpn_cls_score_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['rpn_cls_score_bias'])
        arg_params['rpn_bbox_pred_weight'] = mx.random.normal(
            0, 0.01, shape=arg_shape_dict['rpn_bbox_pred_weight'])
        arg_params['rpn_bbox_pred_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['rpn_bbox_pred_bias'])
        arg_params['cls_score_weight'] = mx.random.normal(
            0, 0.01, shape=arg_shape_dict['cls_score_weight'])
        arg_params['cls_score_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['cls_score_bias'])
        arg_params['bbox_pred_weight'] = mx.random.normal(
            0, 0.001, shape=arg_shape_dict['bbox_pred_weight'])
        arg_params['bbox_pred_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['bbox_pred_bias'])

    if args.use_global_context:
        # additional params for using global context
        """
        for arg_param_name in sym.list_arguments():
            if 'stage5' in arg_param_name:
                # print(arg_param_name, arg_param_name.replace('stage5', 'stage4'))
                arg_params[arg_param_name] = arg_params[arg_param_name.replace('stage5', 'stage4')].copy()  # params of stage5 is initialized from stage4
        arg_params['bn2_gamma'] = arg_params['bn1_gamma'].copy()
        arg_params['bn2_beta'] = arg_params['bn1_beta'].copy()
        """
        for aux_param_name in sym.list_auxiliary_states():
            if 'stage5' in aux_param_name:
                # print(aux_param_name, aux_param_name.replace('stage5', 'stage4'))
                aux_params[aux_param_name] = aux_params[aux_param_name.replace(
                    'stage5', 'stage4')].copy(
                    )  # params of stage5 is initialized from stage4
        aux_params['bn2_moving_mean'] = aux_params['bn1_moving_mean'].copy()
        aux_params['bn2_moving_var'] = aux_params['bn1_moving_var'].copy()

    # check parameter shapes
    for k in sym.list_arguments():
        if k in data_shape_dict:
            continue
        assert k in arg_params, k + ' not initialized'
        assert arg_params[k].shape == arg_shape_dict[k], \
            'shape inconsistent for ' + k + ' inferred ' + str(arg_shape_dict[k]) + ' provided ' + str(arg_params[k].shape)
    for k in sym.list_auxiliary_states():
        assert k in aux_params, k + ' not initialized'
        assert aux_params[k].shape == aux_shape_dict[k], \
            'shape inconsistent for ' + k + ' inferred ' + str(aux_shape_dict[k]) + ' provided ' + str(aux_params[k].shape)

    # create solver
    fixed_param_prefix = config.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]
    mod = MutableModule(sym,
                        data_names=data_names,
                        label_names=label_names,
                        logger=logger,
                        context=ctx,
                        work_load_list=args.work_load_list,
                        max_data_shapes=max_data_shape,
                        max_label_shapes=max_label_shape,
                        fixed_param_prefix=fixed_param_prefix)

    # decide training params
    # metric
    rpn_eval_metric = metric.RPNAccMetric()
    rpn_cls_metric = metric.RPNLogLossMetric()
    rpn_bbox_metric = metric.RPNL1LossMetric()
    eval_metric = metric.RCNNAccMetric()
    cls_metric = metric.RCNNLogLossMetric()
    bbox_metric = metric.RCNNL1LossMetric()
    eval_metrics = mx.metric.CompositeEvalMetric()
    for child_metric in [
            rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric,
            cls_metric, bbox_metric
    ]:
        eval_metrics.add(child_metric)
    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size,
                                              frequent=args.frequent)
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS), config.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS), config.NUM_CLASSES)
    epoch_end_callback = callback.do_checkpoint(prefix, means, stds)
    # decide learning rate
    base_lr = lr
    lr_factor = 0.1
    lr_epoch = [int(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    if not args.use_ava_recordio:
        lr_iters = [
            int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff
        ]
    else:
        lr_iters = [
            int(epoch * train_data.provide_size() / batch_size)
            for epoch in lr_epoch_diff
        ]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
    lr_scheduler = mx.lr_scheduler.MultiFactorScheduler(lr_iters, lr_factor)
    # optimizer
    optimizer_params = {
        'momentum': 0.9,
        'wd': 0.0005,
        'learning_rate': lr,
        'lr_scheduler': lr_scheduler,
        'rescale_grad': (1.0 / batch_size),
        'clip_gradient': 5
    }

    # train
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=args.kvstore,
            optimizer='sgd',
            optimizer_params=optimizer_params,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
예제 #4
0
def train_net(args,
              ctx,
              pretrained,
              epoch,
              prefix,
              begin_epoch,
              end_epoch,
              lr=0.001,
              lr_step='5'):
    # setup config
    #init_config()
    #print(config)
    # setup multi-gpu

    input_batch_size = config.TRAIN.BATCH_IMAGES * len(ctx)

    # print config
    logger.info(pprint.pformat(config))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in args.image_set.split('+')]
    roidbs = [
        load_gt_roidb(args.dataset,
                      image_set,
                      args.root_path,
                      args.dataset_path,
                      flip=not args.no_flip) for image_set in image_sets
    ]
    roidb = merge_roidb(roidbs)
    roidb = filter_roidb(roidb)

    # load symbol
    #sym = eval('get_' + args.network + '_train')(num_classes=config.NUM_CLASSES, num_anchors=config.NUM_ANCHORS)
    #feat_sym = sym.get_internals()['rpn_cls_score_output']
    #train_data = AnchorLoader(feat_sym, roidb, batch_size=input_batch_size, shuffle=not args.no_shuffle,
    #                          ctx=ctx, work_load_list=args.work_load_list,
    #                          feat_stride=config.RPN_FEAT_STRIDE, anchor_scales=config.ANCHOR_SCALES,
    #                          anchor_ratios=config.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING)

    sym = eval('get_' + args.network + '_train')()
    #print(sym.get_internals())
    feat_sym = []
    for stride in config.RPN_FEAT_STRIDE:
        feat_sym.append(sym.get_internals()['rpn_cls_score_stride%s_output' %
                                            stride])

    #train_data = AnchorLoaderFPN(feat_sym, roidb, batch_size=input_batch_size, shuffle=not args.no_shuffle,
    #                              ctx=ctx, work_load_list=args.work_load_list)
    train_data = CropLoader(feat_sym,
                            roidb,
                            batch_size=input_batch_size,
                            shuffle=not args.no_shuffle,
                            ctx=ctx,
                            work_load_list=args.work_load_list)

    # infer max shape
    max_data_shape = [('data', (1, 3, max([v[1] for v in config.SCALES]),
                                max([v[1] for v in config.SCALES])))]
    #max_data_shape = [('data', (1, 3, max([v[1] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (1, roidb[0]['max_num_boxes'], 5)))
    logger.info('providing maximum shape %s %s' %
                (max_data_shape, max_label_shape))

    # infer shape
    data_shape_dict = dict(train_data.provide_data + train_data.provide_label)
    arg_shape, out_shape, aux_shape = sym.infer_shape(**data_shape_dict)
    arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
    out_shape_dict = dict(zip(sym.list_outputs(), out_shape))
    aux_shape_dict = dict(zip(sym.list_auxiliary_states(), aux_shape))
    logger.info('output shape %s' % pprint.pformat(out_shape_dict))

    # load and initialize params
    if args.resume:
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        #for k in ['rpn_conv_3x3', 'rpn_cls_score', 'rpn_bbox_pred', 'cls_score', 'bbox_pred']:
        #  _k = k+"_weight"
        #  if _k in arg_shape_dict:
        #    v = 0.001 if _k.startswith('bbox_') else 0.01
        #    arg_params[_k] = mx.random.normal(0, v, shape=arg_shape_dict[_k])
        #    print('init %s with normal %.5f'%(_k,v))
        #  _k = k+"_bias"
        #  if _k in arg_shape_dict:
        #    arg_params[_k] = mx.nd.zeros(shape=arg_shape_dict[_k])
        #    print('init %s with zero'%(_k))

        for k, v in arg_shape_dict.iteritems():
            if k.find('upsampling') >= 0:
                print('initializing upsampling_weight', k)
                arg_params[k] = mx.nd.zeros(shape=v)
                init = mx.init.Initializer()
                init._init_bilinear(k, arg_params[k])
                #print(args[k])

    # check parameter shapes
    #for k in sym.list_arguments():
    #    if k in data_shape_dict:
    #        continue
    #    assert k in arg_params, k + ' not initialized'
    #    assert arg_params[k].shape == arg_shape_dict[k], \
    #        'shape inconsistent for ' + k + ' inferred ' + str(arg_shape_dict[k]) + ' provided ' + str(arg_params[k].shape)
    #for k in sym.list_auxiliary_states():
    #    assert k in aux_params, k + ' not initialized'
    #    assert aux_params[k].shape == aux_shape_dict[k], \
    #        'shape inconsistent for ' + k + ' inferred ' + str(aux_shape_dict[k]) + ' provided ' + str(aux_params[k].shape)

    # create solver
    fixed_param_prefix = config.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]
    #mod = MutableModule(sym, data_names=data_names, label_names=label_names,
    #                    logger=logger, context=ctx, work_load_list=args.work_load_list,
    #                    max_data_shapes=max_data_shape, max_label_shapes=max_label_shape,
    #                    fixed_param_prefix=fixed_param_prefix)
    fixed_param_names = get_fixed_params(sym, fixed_param_prefix)
    print('fixed', fixed_param_names, file=sys.stderr)
    mod = Module(sym,
                 data_names=data_names,
                 label_names=label_names,
                 logger=logger,
                 context=ctx,
                 work_load_list=args.work_load_list,
                 fixed_param_names=fixed_param_names)

    # decide training params
    # metric
    eval_metrics = mx.metric.CompositeEvalMetric()
    #if len(sym.list_outputs())>4:
    #  metric_names = ['RPNAccMetric', 'RPNLogLossMetric', 'RPNL1LossMetric', 'RCNNAccMetric', 'RCNNLogLossMetric', 'RCNNL1LossMetric']
    #else:#train rpn only
    #print('sym', sym.list_outputs())
    #metric_names = ['RPNAccMetric', 'RPNLogLossMetric', 'RPNL1LossMetric']
    mids = [0, 4, 8]
    for mid in mids:
        _metric = metric.RPNAccMetric(pred_idx=mid, label_idx=mid + 1)
        eval_metrics.add(_metric)
        #_metric = metric.RPNLogLossMetric(pred_idx=mid, label_idx=mid+1)
        #eval_metrics.add(_metric)
        _metric = metric.RPNL1LossMetric(loss_idx=mid + 2, weight_idx=mid + 3)
        eval_metrics.add(_metric)

    #rpn_eval_metric = metric.RPNAccMetric()
    #rpn_cls_metric = metric.RPNLogLossMetric()
    #rpn_bbox_metric = metric.RPNL1LossMetric()
    #eval_metric = metric.RCNNAccMetric()
    #cls_metric = metric.RCNNLogLossMetric()
    #bbox_metric = metric.RCNNL1LossMetric()
    #for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric]:
    #    eval_metrics.add(child_metric)
    # callback
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS), config.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS), config.NUM_CLASSES)
    #epoch_end_callback = callback.do_checkpoint(prefix, means, stds)
    epoch_end_callback = None
    # decide learning rate
    base_lr = lr
    lr_factor = 0.1
    lr_epoch = [int(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(roidb) / input_batch_size) for epoch in lr_epoch_diff
    ]

    #lr_iters = [36000,42000] #TODO
    #lr_iters = [40000,50000,60000] #TODO
    #lr_iters = [40,50,60] #TODO
    end_epoch = 10000
    #lr_iters = [4,8] #TODO
    logger.info('lr %f lr_epoch_diff %s lr_iters %s' %
                (lr, lr_epoch_diff, lr_iters))
    #lr_scheduler = mx.lr_scheduler.MultiFactorScheduler(lr_iters, lr_factor)
    # optimizer
    opt = optimizer.SGD(learning_rate=lr,
                        momentum=0.9,
                        wd=0.0005,
                        rescale_grad=1.0 / len(ctx),
                        clip_gradient=None)
    initializer = mx.init.Xavier()
    #initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="out", magnitude=2) #resnet style

    if len(ctx) > 1:
        train_data = mx.io.PrefetchingIter(train_data)

    _cb = mx.callback.Speedometer(train_data.batch_size,
                                  frequent=args.frequent,
                                  auto_reset=False)
    global_step = [0]

    def save_model(epoch):
        arg, aux = mod.get_params()
        all_layers = mod.symbol.get_internals()
        outs = []
        for stride in config.RPN_FEAT_STRIDE:
            num_anchors = config.RPN_ANCHOR_CFG[str(stride)]['NUM_ANCHORS']
            _name = 'rpn_cls_score_stride%d_output' % stride
            rpn_cls_score = all_layers[_name]

            # prepare rpn data
            rpn_cls_score_reshape = mx.symbol.Reshape(
                data=rpn_cls_score,
                shape=(0, 2, -1, 0),
                name="rpn_cls_score_reshape_stride%d" % stride)

            rpn_cls_prob = mx.symbol.SoftmaxActivation(
                data=rpn_cls_score_reshape,
                mode="channel",
                name="rpn_cls_prob_stride%d" % stride)
            rpn_cls_prob_reshape = mx.symbol.Reshape(
                data=rpn_cls_prob,
                shape=(0, 2 * num_anchors, -1, 0),
                name='rpn_cls_prob_reshape_stride%d' % stride)
            _name = 'rpn_bbox_pred_stride%d_output' % stride
            rpn_bbox_pred = all_layers[_name]
            outs.append(rpn_cls_prob_reshape)
            outs.append(rpn_bbox_pred)
        _sym = mx.sym.Group(outs)
        mx.model.save_checkpoint(prefix, epoch, _sym, arg, aux)

    def _batch_callback(param):
        #global global_step
        _cb(param)
        global_step[0] += 1
        mbatch = global_step[0]
        for _iter in lr_iters:
            if mbatch == _iter:
                opt.lr *= 0.1
                print('lr change to',
                      opt.lr,
                      ' in batch',
                      mbatch,
                      file=sys.stderr)
                break

        if mbatch % 1000 == 0:
            print('saving final checkpoint', mbatch, file=sys.stderr)
            save_model(mbatch)

        if mbatch == lr_iters[-1]:
            print('saving final checkpoint', mbatch, file=sys.stderr)
            save_model(0)
            #arg, aux = mod.get_params()
            #mx.model.save_checkpoint(prefix, 99, mod.symbol, arg, aux)
            sys.exit(0)

    # train
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=_batch_callback,
            kvstore=args.kvstore,
            optimizer=opt,
            initializer=initializer,
            allow_missing=True,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
예제 #5
0
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch,
              lr=0.001, lr_step='5'):
    # set up logger
    logging.basicConfig()
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    # setup config
    config.TRAIN.BATCH_IMAGES = 1
    config.TRAIN.BATCH_ROIS = 128
    config.TRAIN.END2END = True
    config.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED = True

    # load symbol
    sym_instance = eval('symbol_' + args.network)()
    sym_gen = sym_instance.get_symbol
    sym = sym_gen(46,config,is_train=True)
    feat_sym = sym.get_internals()['rpn_cls_score_output']

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    pprint.pprint(config)

    # load dataset and prepare imdb for training
    dataset = Dataset(args.root_path,args.dataset,args.subset,split = args.split)
    roidb = dataset.gt_roidb()
    W = dataset.W

    # load training data
    train_data = AnchorLoader(feat_sym, roidb, batch_size=input_batch_size, shuffle=not args.no_shuffle,
                              ctx=ctx, work_load_list=args.work_load_list,
                              feat_stride=config.RPN_FEAT_STRIDE, anchor_scales=config.ANCHOR_SCALES,
                              anchor_ratios=config.ANCHOR_RATIOS)

    # infer max shape
    max_data_shape = [('data', (input_batch_size, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (input_batch_size, 100, 5)))
    print('providing maximum shape', max_data_shape, max_label_shape)

    # infer shape
    #get a new symbol
    bucket_key = train_data.bucket_key
    print(train_data.provide_data)
    data_shape_dict = dict(train_data.provide_data + train_data.provide_label)
    sym_instance.infer_shape(data_shape_dict)
    #arg_shape, out_shape, aux_shape = curr_sym.infer_shape(**data_shape_dict)
    #arg_shape_dict = dict(zip(curr_sym.list_arguments(), arg_shape))
    #out_shape_dict = dict(zip(curr_sym.list_outputs(), out_shape))
    #aux_shape_dict = dict(zip(curr_sym.list_auxiliary_states(), aux_shape))
    #del arg_shape_dict['lstm_parameters']
    #print(curr_sym.list_arguments())
    #print(aux_shape_dict)

    # load and initialize params
    if args.resume:
        print("continue training from epoch {}".format(begin_epoch))
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        if config.RNN.USE_W2V:
            arg_params['embed_weight'] = mx.nd.array(W)
        else:
            arg_params['embed_weight'] = mx.random.uniform(0,0.01,shape=arg_shape_dict['embed_weight'])
        sym_instance.init_weight(config,arg_params,aux_params)
    #no checking
    #for k in arg_shape_dict.iterkeys():
     #   if k in data_shape_dict:
      #      continue
       # assert k in arg_params, k + ' not initialized'
        #assert arg_params[k].shape == arg_shape_dict[k], \
         #   'shape inconsistent for ' + k + ' inferred ' + str(arg_shape_dict[k]) + ' provided ' + str(arg_params[k].shape)
    #for k in sym.list_auxiliary_states():
     #   assert k in aux_params, k + ' not initialized'
      #  assert aux_params[k].shape == aux_shape_dict[k], \
       #     'shape inconsistent for ' + k + ' inferred ' + str(aux_shape_dict[k]) + ' provided ' + str(aux_params[k].shape)

    # create solver
    fixed_param_prefix = config.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]
    mod = MutableModule(sym_gen,config, data_names=data_names, label_names=label_names,
                        logger=logger, context=ctx, work_load_list=args.work_load_list,
                        max_data_shapes=max_data_shape, max_label_shapes=max_label_shape,
                        fixed_param_prefix=fixed_param_prefix)

    # decide training params
    # metric
    rpn_eval_metric = metric.RPNAccMetric()
    rpn_cls_metric = metric.RPNLogLossMetric()
    rpn_bbox_metric = metric.RPNL1LossMetric()
    eval_metric = metric.RCNNAccMetric()
    cls_metric = metric.RCNNLogLossMetric()
    bbox_metric = metric.RCNNL1LossMetric()
    eval_metrics = mx.metric.CompositeEvalMetric()
    for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric]:
        eval_metrics.add(child_metric)
    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent)
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS), config.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS), config.NUM_CLASSES)
    epoch_end_callback = callback.do_checkpoint(config.ENCODER_CELL,prefix, means, stds)
    # decide learning rate
    base_lr = lr
    lr_factor = 0.1
    lr_epoch = [int(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch]
    lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
    lr_scheduler = mx.lr_scheduler.MultiFactorScheduler(lr_iters, lr_factor)
    # optimizer
    optimizer_params = {'momentum': 0.9,
                        'wd': 0.0005,
                        'learning_rate': lr,
                        'lr_scheduler': lr_scheduler,
                        'rescale_grad': (1.0 / batch_size),
                        'clip_gradient': 5}
    #initializer for fused RNN
    #TODO:not successfully added,try ask it on github issues.
    initializer = mx.initializer.FusedRNN(init=mx.init.Xavier(factor_type='in', magnitude=2.34),
                                          num_hidden = 1024,num_layers=2,mode='lstm')
    # train
    mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback, kvstore=args.kvstore,
            optimizer='sgd', optimizer_params=optimizer_params,allow_missing=True,initializer=mx.init.Xavier(factor_type='in', magnitude=2.34),
            arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
예제 #6
0
파일: train.py 프로젝트: jpulidojr/3DCE_new
def train_net(args):

    if args.rand_seed > 0:
        np.random.seed(args.rand_seed)
        mx.random.seed(args.rand_seed)
        random.seed(args.rand_seed)

    # print config
    logger.info(pprint.pformat(config))
    logger.info(pprint.pformat(args))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in args.image_set.split('+')]
    roidbs = [load_gt_roidb(args.dataset, image_set, args.dataset_path,
                            flip=args.flip)
              for image_set in image_sets]
    roidb = merge_roidb(roidbs)
    roidb = filter_roidb(roidb)

    samplepcnt = args.begin_sample

    if samplepcnt == 100:
        sroidb = roidb
    else:
        sroidb = sample_roidb(roidb, samplepcnt)  # Sample by percentage of all images
    logger.info('Sampling %d pcnt : %d training slices' % (samplepcnt, len(sroidb)))

    # Debug to see if we can concatenate ROIDB's
    #print(sroidb)
    #dir(sroidb)
    #newroidb = sroidb + roidb
    #newroidb = append_roidb(sroidb, roidb)
    #print( "--Append test: " + str(len(sroidb)) +" " + str(len(roidb)) + " = " + str(len(newroidb)) ) 

    # load symbol
    sym = eval('get_' + args.network)(is_train=True, num_classes=config.NUM_CLASSES, num_anchors=config.NUM_ANCHORS)
    feat_sym = sym.get_internals()['rpn_cls_score_output']

    # setup multi-gpu
    ctx = [mx.gpu(int(i)) for i in args.gpus.split(',')]
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.SAMPLES_PER_BATCH * batch_size

    # load training data
    train_data = AnchorLoader(feat_sym, sroidb, batch_size=input_batch_size, shuffle=args.shuffle,
                              ctx=ctx, work_load_list=args.work_load_list,
                              feat_stride=config.RPN_FEAT_STRIDE, anchor_scales=config.ANCHOR_SCALES,
                              anchor_ratios=config.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING,
                              nThreads=default.prefetch_thread_num)

    # infer max shape
    max_data_shape = [('data', (input_batch_size*config.NUM_IMAGES_3DCE, config.NUM_SLICES, config.MAX_SIZE, config.MAX_SIZE))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (input_batch_size*config.NUM_IMAGES_3DCE, 5, 5)))
    logger.info('providing maximum shape %s %s' % (max_data_shape, max_label_shape))

    # load and initialize and check params
    arg_params, aux_params = init_params(args, sym, train_data)

    # create solver
    fixed_param_prefix = config.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]
    mod = MutableModule(sym, data_names=data_names, label_names=label_names,
                        logger=logger, context=ctx, work_load_list=args.work_load_list,
                        max_data_shapes=max_data_shape, max_label_shapes=max_label_shape,
                        fixed_param_prefix=fixed_param_prefix)

    # decide training params
    # metric
    # rpn_eval_metric = metric.RPNAccMetric()
    rpn_cls_metric = metric.RPNLogLossMetric()
    rpn_bbox_metric = metric.RPNL1LossMetric()
    # eval_metric = metric.RCNNAccMetric()
    cls_metric = metric.RCNNLogLossMetric()
    bbox_metric = metric.RCNNL1LossMetric()
    eval_metrics = mx.metric.CompositeEvalMetric()
    for child_metric in [rpn_cls_metric, rpn_bbox_metric,  cls_metric, bbox_metric]:
        eval_metrics.add(child_metric)

    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent)
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS), config.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS), config.NUM_CLASSES)
    epoch_end_callback = (callback.do_checkpoint(args.e2e_prefix, means, stds),
                          callback.do_validate(args.e2e_prefix))

    arg_names = [x for x in sym.list_arguments() if x not in data_names+label_names]
    opt = get_optimizer(args, arg_names, len(sroidb) / input_batch_size, args.iter_size)

    # train
    default.testing = False
    mod.fit(train_data, roidb, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback, kvstore=args.kvstore,
            optimizer=opt, iter_size=args.iter_size,
            arg_params=arg_params, aux_params=aux_params,
            begin_epoch=args.begin_epoch, num_epoch=args.e2e_epoch)
예제 #7
0
def train_net(args,
              ctx,
              pretrained,
              epoch,
              prefix,
              begin_epoch,
              end_epoch,
              lr=0.001,
              lr_step=50000):
    # set up logger
    logging.basicConfig()
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    # setup config
    config.TRAIN.HAS_RPN = True
    config.TRAIN.BATCH_SIZE = 1
    config.TRAIN.BATCH_IMAGES = 1
    config.TRAIN.BATCH_ROIS = 128
    config.TRAIN.END2END = True
    config.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED = True
    config.TRAIN.BG_THRESH_LO = 0.0

    # load symbol
    sym = eval('get_' + args.network + '_train')()
    feat_sym = sym.get_internals()['rpn_cls_score_output']

    # setup multi-gpu
    config.TRAIN.BATCH_IMAGES *= len(ctx)
    config.TRAIN.BATCH_SIZE *= len(ctx)

    # print config
    pprint.pprint(config)

    # load dataset and prepare imdb for training
    imdb = eval(args.dataset)(args.image_set, args.root_path,
                              args.dataset_path)
    roidb = imdb.gt_roidb()
    if args.flip:
        roidb = imdb.append_flipped_images(roidb)

    # load training data
    train_data = AnchorLoader(feat_sym,
                              roidb,
                              batch_size=config.TRAIN.BATCH_SIZE,
                              shuffle=True,
                              ctx=ctx,
                              work_load_list=args.work_load_list)

    # infer max shape
    max_data_shape = [('data', (config.TRAIN.BATCH_SIZE, 3, 1000, 1000))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_SIZE, 100, 5)))
    print 'providing maximum shape', max_data_shape, max_label_shape

    # load pretrained
    arg_params, aux_params = load_param(pretrained, epoch, convert=True)

    # infer shape
    data_shape_dict = dict(train_data.provide_data + train_data.provide_label)
    arg_shape, out_shape, aux_shape = sym.infer_shape(**data_shape_dict)
    arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
    out_shape_dict = dict(zip(sym.list_outputs(), out_shape))
    aux_shape_dict = dict(zip(sym.list_auxiliary_states(), aux_shape))
    print 'output shape'
    pprint.pprint(out_shape_dict)

    # initialize params
    if not args.resume:
        arg_params['rpn_conv_3x3_weight'] = mx.random.normal(
            0, 0.01, shape=arg_shape_dict['rpn_conv_3x3_weight'])
        arg_params['rpn_conv_3x3_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['rpn_conv_3x3_bias'])
        arg_params['rpn_cls_score_weight'] = mx.random.normal(
            0, 0.01, shape=arg_shape_dict['rpn_cls_score_weight'])
        arg_params['rpn_cls_score_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['rpn_cls_score_bias'])
        arg_params['rpn_bbox_pred_weight'] = mx.random.normal(
            0, 0.01, shape=arg_shape_dict['rpn_bbox_pred_weight'])
        arg_params['rpn_bbox_pred_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['rpn_bbox_pred_bias'])
        arg_params['cls_score_weight'] = mx.random.normal(
            0, 0.01, shape=arg_shape_dict['cls_score_weight'])
        arg_params['cls_score_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['cls_score_bias'])
        arg_params['bbox_pred_weight'] = mx.random.normal(
            0, 0.001, shape=arg_shape_dict['bbox_pred_weight'])
        arg_params['bbox_pred_bias'] = mx.nd.zeros(
            shape=arg_shape_dict['bbox_pred_bias'])

    # check parameter shapes
    for k in sym.list_arguments():
        if k in data_shape_dict:
            continue
        assert arg_params[k].shape == arg_shape_dict[k], \
            'shape inconsistent for ' + k + ' inferred ' + str(arg_shape_dict[k]) + ' provided ' + str(arg_params[k].shape)
    for k in sym.list_auxiliary_states():
        assert aux_params[k].shape == aux_shape_dict[k], \
            'shape inconsistent for ' + k + ' inferred ' + str(aux_shape_dict[k]) + ' provided ' + str(aux_params[k].shape)

    # create solver
    fixed_param_prefix = ['conv1', 'conv2']
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]
    mod = MutableModule(sym,
                        data_names=data_names,
                        label_names=label_names,
                        logger=logger,
                        context=ctx,
                        work_load_list=args.work_load_list,
                        max_data_shapes=max_data_shape,
                        max_label_shapes=max_label_shape,
                        fixed_param_prefix=fixed_param_prefix)

    # decide training params
    # metric
    rpn_eval_metric = metric.RPNAccMetric()
    rpn_cls_metric = metric.RPNLogLossMetric()
    rpn_bbox_metric = metric.RPNL1LossMetric()
    eval_metric = metric.RCNNAccMetric()
    cls_metric = metric.RCNNLogLossMetric()
    bbox_metric = metric.RCNNL1LossMetric()
    eval_metrics = mx.metric.CompositeEvalMetric()
    for child_metric in [
            rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric,
            cls_metric, bbox_metric
    ]:
        eval_metrics.add(child_metric)
    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size,
                                              frequent=args.frequent)
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS), imdb.num_classes)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS), imdb.num_classes)
    epoch_end_callback = callback.do_checkpoint(prefix, means, stds)
    # optimizer
    optimizer_params = {
        'momentum': 0.9,
        'wd': 0.0005,
        'learning_rate': lr,
        'lr_scheduler': mx.lr_scheduler.FactorScheduler(lr_step, 0.1),
        'rescale_grad': (1.0 / config.TRAIN.BATCH_SIZE)
    }

    # train
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=args.kvstore,
            optimizer='sgd',
            optimizer_params=optimizer_params,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)