예제 #1
0
                        required=True,
                        help="number of action predicates in each rule")

    cl_args = parser.parse_args()
    background_fname_train = cl_args.background_train
    facts_fname_train = cl_args.facts_train
    pos_fname_train = cl_args.pos_train
    neg_fname_train = cl_args.neg_train
    background_fname_test = cl_args.background_test
    facts_fname_test = cl_args.facts_test
    pos_fname_test = cl_args.pos_test
    neg_fname_test = cl_args.neg_test
    rulelen = int(cl_args.rule_length)
    numrules = int(cl_args.num_rules)

    dfs_train = load_metadata(background_fname_train)
    load_data(facts_fname_train, dfs_train)
    load_labels(pos_fname_train, dfs_train, 1.0)
    load_labels(neg_fname_train, dfs_train, 0.0)

    tails_relation_train = None
    labels_df_train = None
    action_attr = None
    sentence_attr = None
    action_relations_train = []
    action_rel_names_train = []
    for name, df in dfs_train.items():
        colnames = df.columns.values.tolist()
        if "Label" in colnames:
            labels_df_train = df
            sentence_attr = colnames[0]
예제 #2
0
                        help="the target predicate")
    parser.add_argument("-m",
                        "--model",
                        required=True,
                        help="file to read the model from")

    cl_args = parser.parse_args()
    background_fname = cl_args.background
    facts_fname_test = cl_args.facts_test
    target = cl_args.target
    fin = cl_args.model

    (attr_name, labels_df_train, disj,
     rel_names_train) = dill.load(open(fin, 'rb'))

    dfs_test = load_metadata(background_fname)
    load_data(facts_fname_test, dfs_test)

    labels_df_test = dfs_test[target]
    labels_df_test.columns = [attr_name + "0", attr_name + "3"]

    true_links = pd.concat([labels_df_train, labels_df_test])
    true_links = true_links.loc[true_links['Relation'] == target]
    true_links.drop(['Relation'], axis=1, inplace=True)

    cols = true_links.columns.tolist()
    inv_true_links = true_links[[cols[1], cols[0]]].copy()
    inv_true_links.columns = [cols[0], cols[1]]

    mask = [1] * len(rel_names_train)
    pos = rel_names_train.index(target)
예제 #3
0
파일: kbc_1hop_train.py 프로젝트: IBM/LOA
                        help="file containing schema information")
    parser.add_argument("-ftr",
                        "--facts_train",
                        required=True,
                        help="file containing facts for training")
    parser.add_argument("-m",
                        "--model",
                        required=True,
                        help="file to write the model in")

    cl_args = parser.parse_args()
    background_fname = cl_args.background
    facts_fname_train = cl_args.facts_train
    fout = cl_args.model

    dfs_train = load_metadata(background_fname)
    load_data(facts_fname_train, dfs_train)

    attr_name = None
    relations_train = []
    rel_names_train = []
    choices = []
    for name, df in dfs_train.items():
        colnames = df.columns.values.tolist()
        attr_name = colnames[0]
        df.columns = [attr_name + "0", attr_name + "1"]

        choices.append(name)
        rel_names_train.append(name)
        relations_train.append(df)