from pkg_resources import require require('numpy') import numpy as np require('matplotlib') from matplotlib import pyplot as plt import read_data as rd from matplotlib import gridspec fig = plt.figure() gs = gridspec.GridSpec(2, 2) ################################################################################################################################################## dataset1_77 = rd.data_read('../cppProcessing2.0/output_reports/11092015_grain_size/cs04r-sc-serv-77.diamond.ac.uk/grain_size_test.txt',2) #3528 ~1e6 dataset2_77 = rd.data_read('../cppProcessing2.0/output_reports/09_09_2015_grain_size/cs04r-sc-serv-77.diamond.ac.uk/grain_size_test.txt',2) #background dataset3_77 = rd.data_read('../cppProcessing2.0/output_reports/11092015_grain_size_fine_small_grain/cs04r-sc-serv-77.diamond.ac.uk/grain_size_test.txt',2) #small grain grain_size77_1 = np.array(dataset1_77[0]) bandwidth77_1 = np.array(dataset1_77[1]) errbar77_1 = np.array(dataset1_77[2]) grain_size77_2 = np.array(dataset2_77[0]) bandwidth77_2 = np.array(dataset2_77[1]) errbar77_2 = np.array(dataset2_77[2]) grain_size77_3 = np.array(dataset3_77[0]) bandwidth77_3 = np.array(dataset3_77[1]) errbar77_3 = np.array(dataset3_77[2]) ax1 = fig.add_subplot(gs[0,:]) line1 = ax1.plot(grain_size77_2, bandwidth77_2, '-r') ax3 = fig.add_subplot(gs[1,0]) line1 = ax3.plot(grain_size77_3, bandwidth77_3, '-r')
from pkg_resources import require require("numpy") import numpy as np require("matplotlib") from matplotlib import pyplot as plt import read_data as rd fig, ax = plt.subplots() ################################################################################################################################################## dataset_77 = rd.data_read( "../cppProcessing2.0/output_reports/14092015_threads/cs04r-sc-serv-83.diamond.ac.uk/grain_size_test.txt", 0 ) # dataset1_77 = rd.data_read('../cppProcessing2.0/output_reports/13092015_threads/cs04r-sc-serv-77.diamond.ac.uk/grain_size_test.txt',0) # dataset_77 = rd.combine_data(dataset_77, dataset1_77) grain_size77 = np.array(dataset_77[0]) bandwidth77 = np.array(dataset_77[1]) errbar77 = np.array(dataset_77[2]) line1 = ax.plot(grain_size77, bandwidth77, "-b*") upper77 = errbar77 + bandwidth77 lower77 = bandwidth77 - errbar77 # ax.errorbar(grain_size77, bandwidth77, yerr = [errbar77, errbar77], fmt='r^') ################################################################################################################################################## dataset_83 = rd.data_read( "../cppProcessing2.0/output_reports/14092015_threads_large/cs04r-sc-serv-83.diamond.ac.uk/grain_size_test.txt", 0
classCount[vote] += 1 sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] def create_Tree(dataset, label): num = len(dataset) classList = [example[-1] for example in dataset] if classList.count(classList[0]) == len(classList): return classList[0] if len(dataset[0]) == 1: return majorityCnt(classList) root_feature = best_split_feature(dataset) root_label = label[root_feature] decision_tree = {root_label: {}} del (label[root_feature]) root_val = [dataset[i][root_feature] for i in range(num)] unique_val = set(root_val) for val in unique_val: sublabels = label[:] decision_tree[root_label][val] = create_Tree( split_dataset(dataset, root_feature, val), sublabels) return decision_tree if __name__ == '__main__': data, labels = data_read() createPlot(create_Tree(data, labels))