예제 #1
0
        # data file
        index = 0  # sys.argv[1]
        rat = datafiles[int(index)]
        print rat
        f = '/tigress/fdamani/neuro_data/data/raw/allrats_withmissing_limitedtrials/csv/'
        f += rat
        rat = f.split('/')[-1].split('.csv')[0]

        # add to dir name
        savedir += '__obs' + str(num_obs_samples)
        savedir += '__' + rat

        # os.mkdir(savedir)
        # f = '../data/W066_short.csv'

        x, y, rw = read_and_process(num_obs_samples, f, savedir=savedir)
        rw = torch.tensor(rw, dtype=dtype, device=device)

        dim = x.shape[2]
        T = x.shape[0]
        init_prior = ([0.0] * dim, [math.log(1.0)] * dim)
        transition_scale = [math.log(1.0)]  #* dim
    num_future_steps = 1
    category_tt_split = 'single'
    num_mc_samples = 10
    y, x, y_future, x_future = train_future_split(y, x, num_future_steps)
    y_train, y_test, test_inds = train_test_split(y, x, cat=category_tt_split)
    x = torch.tensor(x, dtype=dtype, device=device)
    y_train = torch.tensor(y_train, dtype=dtype, device=device)
    y_test = torch.tensor(y_test, dtype=dtype, device=device)
    test_inds = torch.tensor(test_inds, dtype=torch.long, device=device)
예제 #2
0
    os.makedirs(output_file + '/plots')
    savedir = output_file
    raw_datasets = []
    for ind in inds:
        index = ind
        rat = datafiles[int(index)]
        print rat
        if torch.cuda.is_available():
            f = '/tigress/fdamani/neuro_data/data/raw/allrats_withmissing_limitedtrials/csv/'
        else:
            f = '../data/'
        f += rat
        rat = f.split('/')[-1].split('.csv')[0]

        x, y, rw = read_and_process(num_obs_samples,
                                    f,
                                    savedir=savedir,
                                    proficient=False)
        # x = x[0:500]
        # y = y[0:500]
        # rw = rw[0:500]
        rw = torch.tensor(rw, dtype=dtype, device=device)
        z_true = None
        true_model_params = None

        dim = x.shape[2]
        T = x.shape[0]
        raw_datasets.append((x, y, rw, z_true, true_model_params, dim, T, rat))

    datasets = []
    for dataset in raw_datasets:
        x, y, rw, z_true, true_model_params, dim, T, rat = dataset
예제 #3
0
# rat = f.split('/')[-1].split('.csv')[0]
# num_obs_samples=1
#output_file += '/'+rat
output_file += '/kfold_single_alpha_results_2k'
os.makedirs(output_file)

folds = np.arange(1, len(datafiles))
held_out_marginal_lhs = []
for fd in folds:
    rat = datafiles[fd]
    f = '/tigress/fdamani/neuro_data/data/raw/allrats_withmissing_limitedtrials/csv/'
    #f = '../data/'
    #rat = 'W073.csv'
    f += rat
    num_obs_samples = 1
    x, y, rw = read_and_process(num_obs_samples, f, savedir=output_file)
    T = 2000
    #T = 50
    #num_particles = 100
    num_particles = 1000
    x = x[0:T]
    y = y[0:T]

    x = torch.tensor(x, dtype=dtype, device=device)
    y = torch.tensor(y, dtype=dtype, device=device)

    dim = x.shape[-1]
    md = LearningDynamicsModel(dim)
    ev = HeldOutRat([y, x], md)

    model_params_file = '/tigress/fdamani/neuro_output/5.5/single_alpha_shared_model_kfold_leave_out_' + str(