def main(): if not os.path.isfile('X_train.npy'): X, y = io.load_pictures('../../data/characters/', True) X_train, X_test, y_train, y_test = io.split_data(X, y, 85) io.write_data_to_file(X_train, X_test, y_train, y_test) else: X_train, X_test, y_train, y_test = io.load_data_from_file() #Train and test run_train_and_test(X_train, X_test, y_train, y_test)
def main(): if not os.path.isfile('X_train.npy'): X,y = io.load_pictures('../../data/characters/', True) X_train, X_test, y_train, y_test = io.split_data(X, y, 85) io.write_data_to_file(X_train, X_test, y_train, y_test) else: X_train, X_test, y_train, y_test = io.load_data_from_file() logging.getLogger().setLevel(logging.DEBUG) batch_size = 10 print "\n start train autoencoder 1..." autoencoder1 = autoencoder_one(X_train, batch_size) input_for_autoencoder2 = forward_autoencoder_one(autoencoder1, X_train) print "\n start train autoencoder 2..." autoencoder2 = autoencoder_two(input_for_autoencoder2, batch_size) print " \n start train fcnn ..." run_train_and_test_fcnn(X_train, X_test, y_train, y_test, batch_size, autoencoder1, autoencoder2)
def main(): get_model('http://data.mxnet.io/models/imagenet/resnet/18-layers/resnet-18', 0) sym, arg_params, aux_params = mx.model.load_checkpoint('resnet-18', 0) #print (sym.get_internals()) batch_size = 10 num_classes = 18 if not os.path.isfile('X_train.npy'): X,y = io.load_pictures('characters/', True) X_train, X_test, y_train, y_test = io.split_data(X, y, 85) io.write_data_to_file(X_train, X_test, y_train, y_test) else: X_train, X_test, y_train, y_test = io.load_data_from_file() train_iter, val_iter = get_iterators(X_train, y_train, X_test, y_test, batch_size) mod_score = fit(sym, train_iter, val_iter, batch_size) print (mod_score)