예제 #1
0
	def TrainModel(self, datapath, epoch = 2, save_step = 1000, batch_size = 32, filename = 'model_speech/speech_model2'):
		'''
		训练模型
		参数:
			datapath: 数据保存的路径
			epoch: 迭代轮数
			save_step: 每多少步保存一次模型
			filename: 默认保存文件名,不含文件后缀名
		'''
		data=DataSpeech(datapath)
		data.LoadDataList('train')
		num_data = data.GetDataNum() # 获取数据的数量
		for epoch in range(epoch): # 迭代轮数
			print('[running] train epoch %d .' % epoch)
			n_step = 0 # 迭代数据数
			while True:
				try:
					print('[message] epoch %d . Have train datas %d+'%(epoch, n_step*save_step))
					# data_genetator是一个生成器函数
					yielddatas = data.data_genetator(batch_size, self.AUDIO_LENGTH)
					#self._model.fit_generator(yielddatas, save_step, nb_worker=2)
					self._model.fit_generator(yielddatas, save_step)
					n_step += 1
				except StopIteration:
					print('[error] generator error. please check data format.')
					break
				
				self.SaveModel(comment='_e_'+str(epoch)+'_step_'+str(n_step * save_step))
예제 #2
0
    def TestModel(self, datapath, str_dataset='dev'):
        '''
		测试检验模型效果
		'''
        data = DataSpeech(datapath)
        data.LoadDataList(str_dataset)
        num_data = DataSpeech.GetDataNum()  # 获取数据的数量
        try:
            gen = data.data_genetator(num_data)
            for i in range(1):
                X, y = gen
            r = self._model.test_on_batch(X, y)
            print(r)
        except StopIteration:
            print('[Error] Model Test Error. please check data format.')