예제 #1
0
    def test_virial_observable_SCPU(self):
        fname = os.path.join(self.dir, "test_observables_virial_scpu.h5")
        context = Context()
        context.box_size = [13., 13., 13.]
        context.particle_types.add("A", .1)
        context.potentials.add_harmonic_repulsion("A", "A", 10., .5)
        sim = Simulation("SingleCPU", context)
        for _ in range(10000):
            pos = common.Vec(*(13 * np.random.random(size=3) - .5 * 13))
            sim.add_particle("A", pos)

        virials = []

        def virial_callback(virial):
            virials.append(np.ndarray((3, 3), buffer=virial))

        handle = sim.register_observable_virial(1, virial_callback)
        with closing(io.File.create(fname)) as f:
            handle.enable_write_to_file(f, u"virial", int(3))
            sim.run(10, .1)
            handle.flush()

        with h5py.File(fname, "r") as f2:
            h5virials = f2["readdy/observables/virial/data"]
            for v, v2 in zip(virials, h5virials):
                np.testing.assert_almost_equal(v, v2)
예제 #2
0
    def test_particle_positions_observable(self):
        fname = os.path.join(self.dir,
                             "test_observables_particle_positions.h5")
        context = Context()
        context.box_size = [13., 13., 13.]
        context.particle_types.add("A", .1)
        sim = Simulation("SingleCPU", context)
        sim.add_particle("A", common.Vec(0, 0, 0))
        # every time step, add one particle
        sim.register_observable_n_particles(
            1, ["A"],
            lambda n: sim.add_particle("A", common.Vec(1.5, 2.5, 3.5)))
        handle = sim.register_observable_particle_positions(1, [])
        n_timesteps = 19
        with closing(io.File.create(fname)) as f:
            handle.enable_write_to_file(f, u"particle_positions", int(3))
            sim.run(n_timesteps, 0)
            handle.flush()

        with h5py.File(fname, "r") as f2:
            data = f2["readdy/observables/particle_positions/data"][:]
            np.testing.assert_equal(len(data), n_timesteps + 1)
            for t, positions in enumerate(data):
                # we begin with two particles
                np.testing.assert_equal(len(positions), t + 2)
                np.testing.assert_equal(positions[0]["x"], 0)
                np.testing.assert_equal(positions[0]["y"], 0)
                np.testing.assert_equal(positions[0]["z"], 0)
                for i in range(1, len(positions)):
                    np.testing.assert_equal(positions[i]["x"], 1.5)
                    np.testing.assert_equal(positions[i]["y"], 2.5)
                    np.testing.assert_equal(positions[i]["z"], 3.5)
예제 #3
0
 def test_unbonded_edge(self):
     context = Context()
     context.box_size = [10., 10., 10.]
     context.topologies.add_type("TA")
     context.particle_types.add("T",
                                1.0,
                                flavor=ParticleTypeFlavor.TOPOLOGY)
     context.particle_types.add("D",
                                1.0,
                                flavor=ParticleTypeFlavor.TOPOLOGY)
     context.topologies.configure_bond_potential(
         "T", "T", BondedPotentialConfiguration(10., 11., "harmonic"))
     sim = Simulation("SingleCPU", context)
     np.testing.assert_equal(sim.kernel_supports_topologies(), True)
     particles = [
         sim.create_topology_particle("T", common.Vec(0, 0, 0))
         for _ in range(3)
     ]
     particles.append(sim.create_topology_particle("D", common.Vec(0, 0,
                                                                   0)))
     top = sim.add_topology("TA", particles)
     graph = top.get_graph()
     graph.add_edge(0, 1)
     graph.add_edge(1, 2)
     graph.add_edge(2, 3)
     with (np.testing.assert_raises(ValueError)):
         top.configure()
예제 #4
0
    def test_write_trajectory(self):
        traj_fname = os.path.join(self.dir, "traj.h5")
        context = Context()
        context.box_size = [5., 5., 5.]
        context.particle_types.add("A", 0.0)
        context.reactions.add_conversion("A->A", "A", "A", 1.)
        simulation = Simulation("SingleCPU", context)

        def callback(_):
            simulation.add_particle("A", common.Vec(0, 0, 0))

        simulation.register_observable_n_particles(1, ["A"], callback)
        traj_handle = simulation.register_observable_trajectory(0)
        with closing(io.File.create(traj_fname, io.FileFlag.OVERWRITE)) as f:
            traj_handle.enable_write_to_file(f, u"", 3)
            loop = simulation.create_loop(1.)
            loop.write_config_to_file(f)
            loop.run(20)

        r = TrajectoryReader(traj_fname)
        trajectory_items = r[:]
        for idx, items in enumerate(trajectory_items):
            np.testing.assert_equal(len(items), idx + 1)
            for item in items:
                np.testing.assert_equal(item.t, idx)
                np.testing.assert_equal(item.position, np.array([.0, .0, .0]))

        with h5py.File(traj_fname, 'r') as f:
            np.testing.assert_equal(
                "A", f["readdy/config/particle_types"][0]["name"])
예제 #5
0
 def test_sanity(self):
     simulation = Simulation("SingleCPU", Context())
     loop = simulation.create_loop(1.)
     loop.use_integrator("EulerBDIntegrator")
     loop.evaluate_forces(False)
     loop.use_reaction_scheduler("UncontrolledApproximation")
     loop.evaluate_observables(False)
     loop.run(10)
예제 #6
0
    def test_reaction_counts_observable(self):
        fname = os.path.join(self.dir,
                             "test_observables_particle_reaction_counts.h5")
        context = Context()
        context.box_size = [10., 10., 10.]
        context.particle_types.add("A", .0)
        context.particle_types.add("B", .0)
        context.particle_types.add("C", .0)
        context.reactions.add_conversion("mylabel", "A", "B", .00001)
        context.reactions.add_conversion("A->B", "A", "B", 1e16)
        context.reactions.add_fusion("B+C->A", "B", "C", "A", 1e16, 1.0, .5,
                                     .5)
        sim = Simulation("CPU", context)
        sim.add_particle("A", common.Vec(0, 0, 0))
        sim.add_particle("B", common.Vec(1.0, 1.0, 1.0))
        sim.add_particle("C", common.Vec(1.1, 1.0, 1.0))

        n_timesteps = 1
        handle = sim.register_observable_reaction_counts(1)
        with closing(io.File.create(fname)) as f:
            handle.enable_write_to_file(f, u"reactions", int(3))
            loop = sim.create_loop(1)
            loop.use_reaction_scheduler("Gillespie")
            loop.write_config_to_file(f)
            loop.run(1)

        import readdy.util.io_utils as io_utils
        reactions = io_utils.get_reactions(fname)

        with h5py.File(fname, "r") as f2:
            data = f2["readdy/observables/reactions"]
            time_series = f2["readdy/observables/reactions/time"]
            np.testing.assert_equal(time_series,
                                    np.array(range(0, n_timesteps + 1)))

            def get_item(name, collection):
                return next(x for x in collection if x["name"] == name)

            mylabel_id = get_item("mylabel", reactions.values())["id"]
            atob_id = get_item("A->B", reactions.values())["id"]
            fusion_id = get_item("B+C->A", reactions.values())["id"]

            # counts of first time step, time is first index
            np.testing.assert_equal(data["counts/" + str(mylabel_id)][0],
                                    np.array([0]))
            np.testing.assert_equal(data["counts/" + str(atob_id)][0],
                                    np.array([0]))
            np.testing.assert_equal(data["counts/" + str(fusion_id)][0],
                                    np.array([0]))
            # counts of second time step
            np.testing.assert_equal(data["counts/" + str(mylabel_id)][1],
                                    np.array([0]))
            np.testing.assert_equal(data["counts/" + str(atob_id)][1],
                                    np.array([1]))
            np.testing.assert_equal(data["counts/" + str(fusion_id)][1],
                                    np.array([1]))
예제 #7
0
    def test_sanity(self):
        context = Context()
        context.box_size = [10., 10., 10.]
        context.topologies.add_type("TA")
        context.particle_types.add("T",
                                   1.0,
                                   flavor=ParticleTypeFlavor.TOPOLOGY)
        context.topologies.configure_bond_potential(
            "T", "T", BondedPotentialConfiguration(10., 11., "harmonic"))
        sim = Simulation("SingleCPU", context)
        np.testing.assert_equal(sim.kernel_supports_topologies(), True)
        particles = [
            sim.create_topology_particle("T", common.Vec(x, 0, 0))
            for x in range(4)
        ]
        top = sim.add_topology("TA", particles)
        graph = top.graph
        graph.add_edge(0, 1)
        graph.add_edge(1, 2)
        graph.add_edge(2, 3)
        np.testing.assert_equal(len(graph.get_vertices()), 4)

        for v in graph.vertices:

            if v.particle_index == 0:
                np.testing.assert_equal(top.position_of_vertex(v),
                                        common.Vec(0, 0, 0))
                np.testing.assert_equal(len(v.neighbors()), 1)
                np.testing.assert_equal(
                    1 in [vv.get().particle_index for vv in v], True)
            if v.particle_index == 1:
                np.testing.assert_equal(top.position_of_vertex(v),
                                        common.Vec(1, 0, 0))
                np.testing.assert_equal(len(v.neighbors()), 2)
                np.testing.assert_equal(
                    0 in [vv.get().particle_index for vv in v], True)
                np.testing.assert_equal(
                    2 in [vv.get().particle_index for vv in v], True)
            if v.particle_index == 2:
                np.testing.assert_equal(top.position_of_vertex(v),
                                        common.Vec(2, 0, 0))
                np.testing.assert_equal(len(v.neighbors()), 2)
                np.testing.assert_equal(
                    1 in [vv.get().particle_index for vv in v], True)
                np.testing.assert_equal(
                    3 in [vv.get().particle_index for vv in v], True)
            if v.particle_index == 3:
                np.testing.assert_equal(top.position_of_vertex(v),
                                        common.Vec(3, 0, 0))
                np.testing.assert_equal(len(v.neighbors()), 1)
                np.testing.assert_equal(
                    2 in [vv.get().particle_index for vv in v], True)
        top.configure()
        sim.run(0, 1)
예제 #8
0
    def test_n_particles_observable(self):
        fname = os.path.join(self.dir, "test_observables_n_particles.h5")

        context = Context()
        box_size = [10., 10., 10.]
        context.kbt = 2
        context.pbc = [True, True, True]
        context.box_size = box_size
        context.particle_types.add("A", .2)
        context.particle_types.add("B", .2)
        simulation = Simulation("SingleCPU", context)

        simulation.add_particle("A", common.Vec(-2.5, 0, 0))
        simulation.add_particle("B", common.Vec(0, 0, 0))
        n_time_steps = 50
        callback_n_particles_a_b = []
        callback_n_particles_all = []

        def callback_ab(value):
            callback_n_particles_a_b.append(value)
            simulation.add_particle("A", common.Vec(-1, -1, -1))

        def callback_all(hist):
            callback_n_particles_all.append(hist)
            simulation.add_particle("A", common.Vec(-1, -1, -1))
            simulation.add_particle("B", common.Vec(-1, -1, -1))

        handle_a_b_particles = simulation.register_observable_n_particles(
            1, ["A", "B"], callback_ab)
        handle_all = simulation.register_observable_n_particles(
            1, [], callback_all)
        with closing(io.File.create(fname)) as f:
            handle_a_b_particles.enable_write_to_file(f, u"n_a_b_particles",
                                                      int(3))
            handle_all.enable_write_to_file(f, u"n_particles", int(5))
            simulation.run(n_time_steps, 0.02)
            handle_all.flush()
            handle_a_b_particles.flush()

        with h5py.File(fname, "r") as f2:
            n_a_b_particles = f2["readdy/observables/n_a_b_particles/data"][:]
            n_particles = f2["readdy/observables/n_particles/data"][:]
            time_series = f2["readdy/observables/n_a_b_particles/time"]
            np.testing.assert_equal(time_series,
                                    np.array(range(0, n_time_steps + 1)))
            for t in range(n_time_steps):
                np.testing.assert_equal(n_a_b_particles[t][0],
                                        callback_n_particles_a_b[t][0])
                np.testing.assert_equal(n_a_b_particles[t][1],
                                        callback_n_particles_a_b[t][1])
                np.testing.assert_equal(n_particles[t][0],
                                        callback_n_particles_all[t][0])
예제 #9
0
    def test_particles_observable(self):
        fname = os.path.join(self.dir, "test_observables_particles.h5")
        context = Context()
        context.box_size = [13., 13., 13.]
        context.particle_types.add("A", .1)
        context.particle_types.add("B", .1)
        sim = Simulation("SingleCPU", context)
        sim.add_particle("A", common.Vec(0, 0, 0))
        sim.add_particle("B", common.Vec(0, 0, 0))
        # every time step, add one particle
        sim.register_observable_n_particles(
            1, ["A"],
            lambda n: sim.add_particle("A", common.Vec(1.5, 2.5, 3.5)))
        handle = sim.register_observable_particles(1)
        n_timesteps = 19
        with closing(io.File.create(fname)) as f:
            handle.enable_write_to_file(f, u"particles", int(3))
            loop = sim.create_loop(0)
            loop.write_config_to_file(f)
            loop.run(n_timesteps)
            handle.flush()

        from readdy.util.io_utils import get_particle_types

        particle_types = get_particle_types(fname)

        with h5py.File(fname, "r") as f2:

            types = f2["readdy/observables/particles/types"][:]
            ids = f2["readdy/observables/particles/ids"][:]
            positions = f2["readdy/observables/particles/positions"][:]
            for t in range(n_timesteps):
                np.testing.assert_equal(len(types[t]), t + 3)
                np.testing.assert_equal(len(ids[t]), t + 3)
                np.testing.assert_equal(len(positions[t]), t + 3)
                np.testing.assert_equal(types[t][0],
                                        particle_types["A"]["type_id"])
                np.testing.assert_equal(positions[t][0][0], 0)
                np.testing.assert_equal(positions[t][0][1], 0)
                np.testing.assert_equal(positions[t][0][2], 0)
                np.testing.assert_equal(positions[t][1][0], 0)
                np.testing.assert_equal(positions[t][1][1], 0)
                np.testing.assert_equal(positions[t][1][2], 0)
                np.testing.assert_equal(types[t][1],
                                        particle_types["B"]["type_id"])
                for others in range(2, len(types[t])):
                    np.testing.assert_equal(types[t][others],
                                            particle_types["A"]["type_id"])
                    np.testing.assert_equal(positions[t][others][0], 1.5)
                    np.testing.assert_equal(positions[t][others][1], 2.5)
                    np.testing.assert_equal(positions[t][others][2], 3.5)
예제 #10
0
    def test_interrupt_simple(self):
        context = Context()
        context.particle_types.add("A", 0.1)
        sim = Simulation("SingleCPU", context)
        # Define counter as list. This is a workaround because nosetest will complain otherwise.
        counter = [0]

        def increment(result):
            counter[0] += 1

        sim.register_observable_n_particles(1, ["A"], increment)
        do_continue = lambda t: t < 5
        sim.create_loop(.1).run_with_criterion(do_continue)
        np.testing.assert_equal(counter[0], 6)
예제 #11
0
    def test_radial_distribution_observable(self):
        fname = os.path.join(self.dir,
                             "test_observables_radial_distribution.h5")

        context = Context()
        context.kbt = 2
        context.pbc = [True, True, True]
        box_size = [10., 10., 10.]
        context.box_size = box_size
        context.particle_types.add("A", .2)
        context.particle_types.add("B", .2)
        context.potentials.add_harmonic_repulsion("A", "B", 10, 2.)

        simulation = Simulation("SingleCPU", context)

        simulation.add_particle("A", common.Vec(-2.5, 0, 0))
        simulation.add_particle("B", common.Vec(0, 0, 0))
        bin_borders = np.arange(0, 5, .01)
        density = 1. / (box_size[0] * box_size[1] * box_size[2])
        n_time_steps = 50
        callback_centers = []
        callback_rdf = []

        def rdf_callback(pair):
            callback_centers.append(pair[0])
            callback_rdf.append(pair[1])

        handle = simulation.register_observable_radial_distribution(
            1, bin_borders, ["A"], ["B"], density, rdf_callback)
        with closing(io.File.create(fname)) as f:
            handle.enable_write_to_file(f, u"radial_distribution", int(3))
            simulation.run(n_time_steps, 0.02)
            handle.flush()

        with h5py.File(fname, "r") as f2:
            bin_centers = f2[
                "readdy/observables/radial_distribution/bin_centers"][:]
            distribution = f2[
                "readdy/observables/radial_distribution/distribution"][:]
            for t in range(n_time_steps):
                np.testing.assert_equal(bin_centers,
                                        np.array(callback_centers[t]))
                np.testing.assert_equal(distribution[t],
                                        np.array(callback_rdf[t]))
예제 #12
0
    def test_interrupt_maxparticles(self):
        context = Context()
        context.particle_types.add("A", 0.1)
        context.reactions.add_fission("bla", "A", "A", "A", 1000., 0., 0.5,
                                      0.5)
        sim = Simulation("SingleCPU", context)
        sim.add_particle("A", Vec(0, 0, 0))
        counter = [0]
        shall_stop = [False]

        def increment(result):
            counter[0] += 1
            if result[0] >= 8:
                shall_stop[0] = True

        sim.register_observable_n_particles(1, ["A"], increment)
        loop = sim.create_loop(1.)
        do_continue = lambda t: not shall_stop[0]
        loop.run_with_criterion(do_continue)
        np.testing.assert_equal(counter[0], 4)
예제 #13
0
    def chain_decay(self, kernel):
        context = Context()
        context.box_size = [10., 10., 10.]
        context.topologies.add_type("TA")

        context.particle_types.add("B", 1.0, ParticleTypeFlavor.NORMAL)
        context.particle_types.add("Topology A", 1.0,
                                   ParticleTypeFlavor.TOPOLOGY)
        context.topologies.configure_bond_potential(
            "Topology A", "Topology A",
            BondedPotentialConfiguration(10, 10, "harmonic"))

        context.topologies.add_structural_reaction("TA",
                                                   self._get_decay_reaction())
        context.topologies.add_structural_reaction("TA",
                                                   self._get_split_reaction())

        sim = Simulation(kernel, context)
        np.testing.assert_equal(sim.kernel_supports_topologies(), True)

        n_elements = 50.
        particles = [
            sim.create_topology_particle(
                "Topology A", common.Vec(-5. + i * 10. / n_elements, 0, 0))
            for i in range(int(n_elements))
        ]
        topology = sim.add_topology("TA", particles)

        for i in range(int(n_elements - 1)):
            topology.get_graph().add_edge(i, i + 1)

        # h = sim.register_observable_n_particles(1, [], lambda x: print("n particles=%s" % x))

        np.testing.assert_equal(1, len(sim.current_topologies))

        sim.run(500, 1.)

        np.testing.assert_equal(0, len(sim.current_topologies))
예제 #14
0
    def test_histogram_along_axis_observable(self):
        fname = os.path.join(self.dir, "test_observables_hist_along_axis.h5")

        context = Context()
        context.kbt = 2
        context.pbc = [True, True, True]
        box_size = [10., 10., 10.]
        context.box_size = box_size
        context.particle_types.add("A", .2)
        context.particle_types.add("B", .2)
        context.potentials.add_harmonic_repulsion("A", "B", 10, 2.)
        simulation = Simulation("SingleCPU", context)

        simulation.add_particle("A", common.Vec(-2.5, 0, 0))
        simulation.add_particle("B", common.Vec(0, 0, 0))
        bin_borders = np.arange(0, 5, .01)
        n_time_steps = 50
        callback_hist = []

        def hist_callback(hist):
            callback_hist.append(hist)

        handle = simulation.register_observable_histogram_along_axis(
            2, bin_borders, 0, ["A", "B"], hist_callback)
        with closing(io.File.create(fname)) as f:
            handle.enable_write_to_file(f, u"hist_along_x_axis", int(3))
            simulation.run(n_time_steps, 0.02)
            handle.flush()

        with h5py.File(fname, "r") as f2:
            histogram = f2["readdy/observables/hist_along_x_axis/data"][:]
            time_series = f2["readdy/observables/hist_along_x_axis/time"]
            np.testing.assert_equal(time_series,
                                    np.array(range(0, n_time_steps + 1))[::2])
            for t in range(n_time_steps // 2):
                np.testing.assert_equal(histogram[t],
                                        np.array(callback_hist[t]))
예제 #15
0
    def test_write_trajectory_as_observable(self):
        traj_fname = os.path.join(self.dir, "traj_as_obs.h5")
        context = Context()
        context.box_size = [5., 5., 5.]
        context.particle_types.add("A", 0.0)
        simulation = Simulation("SingleCPU", context)

        def callback(_):
            simulation.add_particle("A", common.Vec(0, 0, 0))

        simulation.register_observable_n_particles(1, ["A"], callback)
        traj_handle = simulation.register_observable_trajectory(1)

        with closing(io.File.create(traj_fname, io.FileFlag.OVERWRITE)) as f:
            traj_handle.enable_write_to_file(f, u"", int(3))
            simulation.run(20, 1)

        r = TrajectoryReader(traj_fname)
        trajectory_items = r[:]
        for idx, items in enumerate(trajectory_items):
            np.testing.assert_equal(len(items), idx + 1)
            for item in items:
                np.testing.assert_equal(item.t, idx)
                np.testing.assert_equal(item.position, np.array([.0, .0, .0]))
예제 #16
0
    def test_reactions_observable(self):
        fname = os.path.join(self.dir,
                             "test_observables_particle_reactions.h5")
        context = Context()
        context.box_size = [10., 10., 10.]
        context.particle_types.add("A", .0)
        context.particle_types.add("B", .0)
        context.particle_types.add("C", .0)
        context.reactions.add_conversion("mylabel", "A", "B", .00001)
        context.reactions.add_conversion("A->B", "A", "B", 1.)
        context.reactions.add_fusion("B+C->A", "B", "C", "A", 1.0, 1.0, .5, .5)
        sim = Simulation("CPU", context)
        sim.add_particle("A", common.Vec(0, 0, 0))
        sim.add_particle("B", common.Vec(1.0, 1.0, 1.0))
        sim.add_particle("C", common.Vec(1.1, 1.0, 1.0))

        n_timesteps = 1

        handle = sim.register_observable_reactions(1)
        with closing(io.File.create(fname)) as f:
            handle.enable_write_to_file(f, u"reactions", int(3))
            loop = sim.create_loop(1)
            loop.write_config_to_file(f)
            loop.run(n_timesteps)

        type_str_to_id = {
            k: x["type_id"]
            for k, x in ioutils.get_particle_types(fname).items()
        }

        with h5py.File(fname, "r") as f2:
            data = f2["readdy/observables/reactions"]
            time_series = f2["readdy/observables/reactions/time"]
            np.testing.assert_equal(time_series,
                                    np.array(range(0, n_timesteps + 1)))

            def get_item(name, collection):
                return next(x for x in collection if x["name"] == name)

            import readdy.util.io_utils as io_utils
            reactions = io_utils.get_reactions(fname)

            mylabel_reaction = get_item("mylabel", reactions.values())
            np.testing.assert_allclose(mylabel_reaction["rate"], .00001)
            np.testing.assert_equal(mylabel_reaction["n_educts"], 1)
            np.testing.assert_equal(mylabel_reaction["n_products"], 1)
            np.testing.assert_equal(mylabel_reaction["educt_types"],
                                    [type_str_to_id["A"], 0])
            np.testing.assert_equal(mylabel_reaction["product_types"],
                                    [type_str_to_id["B"], 0])
            atob_reaction = get_item("A->B", reactions.values())
            np.testing.assert_equal(atob_reaction["rate"], 1.)
            np.testing.assert_equal(atob_reaction["n_educts"], 1)
            np.testing.assert_equal(atob_reaction["n_products"], 1)
            np.testing.assert_equal(mylabel_reaction["educt_types"],
                                    [type_str_to_id["A"], 0])
            np.testing.assert_equal(mylabel_reaction["product_types"],
                                    [type_str_to_id["B"], 0])

            fusion_reaction = get_item("B+C->A", reactions.values())
            np.testing.assert_equal(fusion_reaction["rate"], 1.)
            np.testing.assert_equal(fusion_reaction["educt_distance"], 1.)
            np.testing.assert_equal(fusion_reaction["n_educts"], 2)
            np.testing.assert_equal(fusion_reaction["n_products"], 1)
            np.testing.assert_equal(fusion_reaction["educt_types"],
                                    [type_str_to_id["B"], type_str_to_id["C"]])
            np.testing.assert_equal(fusion_reaction["product_types"],
                                    [type_str_to_id["A"], 0])

            records = data["records"][:]
            np.testing.assert_equal(len(records), 2)
            # records of 1st time step
            for record in records[1]:
                np.testing.assert_equal(
                    record["reaction_type"] == 0
                    or record["reaction_type"] == 1, True)
                if record["reaction_type"] == 0:
                    np.testing.assert_equal(record["position"],
                                            np.array([.0, .0, .0]))
                    np.testing.assert_equal(record["reaction_id"],
                                            atob_reaction["id"])
                elif record["reaction_type"] == 1:
                    # fusion
                    np.testing.assert_allclose(record["position"],
                                               np.array([1.05, 1.0, 1.0]))
                    np.testing.assert_equal(record["reaction_id"],
                                            fusion_reaction["id"])