예제 #1
0
Y_DIM       =   5

if __name__ == '__main__':

    parser  =   argparse.ArgumentParser()

    parser.add_argument('-X', help = 'X.h5 file (with path)')
    parser.add_argument('--Y', help = '(optional) Y.h5 file (with path)')
    parser.add_argument('--file_out', help = '(optional) .h5 file output (with path)')

    args = parser.parse_args()

    # reading X data
    filenameX  =   args.X

    r   =   reader.H5Reader({'X':(None,X_DIM), 'Y':(None,Y_DIM)})

    dataX   =   r.read(filenameX)
    X       =   dataX['X']

    # load models
    filename    =   os.path.join( PATH_MDL, 'neural_network.sav')
    model       =   joblib.load( filename )
    filename    =   os.path.join( PATH_MDL, 'scalerX.sav')
    scalerX     =   joblib.load( filename )
    filename    =   os.path.join( PATH_MDL, 'scalerY.sav')
    scalerY     =   joblib.load( filename )
    filename    =   os.path.join( PATH_MDL, 'linreg.sav')
    benchmark   =   joblib.load( filename )

    # neural_network predict
예제 #2
0
import reader
import os
import tools
import liquid_algos as algo
import joblib

path_data = 'data'
path_mdl = 'model'

if __name__ == '__main__':

    ### read data
    filenameX = os.path.join(path_data, 'X.h5')
    filenameY = os.path.join(path_data, 'Y.h5')

    r = reader.H5Reader(data_shape={'Y': (None, 5)})

    dataX = r.read(filenameX)
    dataY = r.read(filenameY)

    X = dataX['X']
    Y = dataY['Y']

    # train NN
    scalerX, scalerY = algo.fit_scaler(X), algo.fit_scaler(Y)
    Xscale, Yscale = scalerX.transform(X), scalerY.transform(Y)
    model = algo.sklearn_nn(hidden_layer_sizes=(256, 128),
                            activation='relu',
                            max_iter=100)
    model.fit(Xscale, Yscale)