def plotalltausfits(filenames, outpath, title=None, xlim=None, ylims=None): import numpy as np from readfits import read_corr ylim0, ylim1, ylim2 = [None, None, None] if ylims is not None: ylim0, ylim1, ylim2 = ylims meanr, tau0, cov_tau0 = read_corr(filenames[0]) meanr, tau2, cov_tau2 = read_corr(filenames[1]) meanr, tau5, cov_tau5 = read_corr(filenames[2]) sig_tau0 = np.sqrt(np.diag(cov_tau0)) sig_tau2 = np.sqrt(np.diag(cov_tau2)) sig_tau5 = np.sqrt(np.diag(cov_tau5)) plt.clf() pretty_rho2(meanr, tau0, sig_tau0, tau2, sig_tau2, tau5, sig_tau5, tauleg=True, title=title, xlim=xlim, ylim=ylim1) print("Printing file: ", outpath + 'tau_all_rsrs.png') plt.savefig(outpath + 'tau_all_rsgal.png')
def plotallrhosfits(filenames, outpath, title=None, xlim=None, ylims=None): import numpy as np from readfits import read_corr ylim0, ylim1 = [None, None] if ylims is not None: ylim0, ylim1 = ylims meanr, rho0, cov_rho0 = read_corr(filenames[0]) meanr, rho1, cov_rho1 = read_corr(filenames[1]) meanr, rho2, cov_rho2 = read_corr(filenames[2]) meanr, rho3, cov_rho3 = read_corr(filenames[3]) meanr, rho4, cov_rho4 = read_corr(filenames[4]) meanr, rho5, cov_rho5 = read_corr(filenames[5]) sig_rho0 = np.sqrt(np.diag(cov_rho0)) sig_rho1 = np.sqrt(np.diag(cov_rho1)) sig_rho2 = np.sqrt(np.diag(cov_rho2)) sig_rho3 = np.sqrt(np.diag(cov_rho3)) sig_rho4 = np.sqrt(np.diag(cov_rho4)) sig_rho5 = np.sqrt(np.diag(cov_rho5)) plt.clf() pretty_rho1(meanr, rho1, sig_rho1, rho3, sig_rho3, rho4, sig_rho4, title=title, xlim=xlim, ylim=ylim0) print("Printing file: ", outpath + 'rho1_all_rsrs.png') plt.savefig(outpath + 'rho1_all_rsrs.png') plt.clf() pretty_rho2(meanr, rho0, sig_rho0, rho2, sig_rho2, rho5, sig_rho5, title=title, xlim=xlim, ylim=ylim1) print("Printing file: ", outpath + 'rho2_all_rsrs.png') plt.savefig(outpath + 'rho2_all_rsrs.png')
def writexipbias(samples,rhosfilenames,xim=False, plots=False,nameterms='terms_dxi.png',namedxip='dxi.png',namecovmat='covmat_pars.png',filename='dxip.fits'): from readjson import read_rhos from maxlikelihood import bestparameters from plot_stats import pretty_rho from readfits import read_corr from astropy.io import fits import numpy as np #plot covariance matrix of parameters alpha, beta and eta. if plots: par_matcov = np.cov(samples) corr=corrmatrix(par_matcov) print(par_matcov) print(corr) cov_vmin=np.min(corr) plt.imshow(corr,cmap='viridis'+'_r', interpolation='nearest', aspect='auto', origin='lower', vmin=cov_vmin, vmax=1.) plt.colorbar() plt.title(r'$\alpha \mid \beta \mid \eta $') plt.savefig(namecovmat, dpi=500) print(namecovmat, 'Printed!') a = b = n = 0; vara = varb = varn = 0; covab = covan = covbn = 0 bestpar = bestparameters(samples) par_matcov = np.cov(samples) if (par_matcov.size==1 ): variances = par_matcov else: variances = np.diagonal(par_matcov) covariances = sum( (par_matcov[i,i+1: ].tolist() for i in range(len(samples) - 1)) , [] ) if(len(samples)==3): a, b, n = bestpar vara, varb, varn = variances covab, covan, covbn = covariances elif(len(samples)==2): a, b = bestpar vara, varb = variances covab = covariances[0] elif(len(samples)==1): a = bestpar[0] vara = variances else: print("Warning, test type not defined") rhonames = args.rhos meanr, rho0, cov_rho0 = read_corr(rhonames[0]) meanr, rho1, cov_rho1 = read_corr(rhonames[1]) meanr, rho2, cov_rho2 = read_corr(rhonames[2]) meanr, rho3, cov_rho3 = read_corr(rhonames[3]) meanr, rho4, cov_rho4 = read_corr(rhonames[4]) meanr, rho5, cov_rho5 = read_corr(rhonames[5]) sig_rho0 = np.sqrt(np.diag(cov_rho0)) sig_rho1 = np.sqrt(np.diag(cov_rho1)) sig_rho2 = np.sqrt(np.diag(cov_rho2)) sig_rho3 = np.sqrt(np.diag(cov_rho3)) sig_rho4 = np.sqrt(np.diag(cov_rho4)) sig_rho5 = np.sqrt(np.diag(cov_rho5)) #Ploting each term of the bias if(plots): xlim = [2., 300.] #supposing that a,b and n are idependent of rhos(scale independent) var0 = ((2*a*rho0p)**2)*vara + (a**2)*(sig_rho0**2) var1 = ((2*b*rho1p)**2)*varb + (b**2)*(sig_rho1**2) var2 = ((2*n*rho3p)**2)*varn + (n**2)*(sig_rho3**2) varab = vara*(b**2) + varb*(a**2) + 2*covab*(a*b) #varab = ((a*b)**2)*( (vara/((a)**2)) + (varb/((b)**2)) + 2*covab/(a*b) ) var3 = 4*( (rho2p**2)*varab + (sig_rho2**2)*((a*b)**2) ) #var3 = 4*((a*b*rho2p)**2)*( varab/((a*b)**2) + (sig_rho2/rho2p)**2 ) varbn = varn*(b**2) + varb*(n**2) + 2*covbn*(b*n) #varbn = ((n*b)**2)*( (varn/((n)**2)) + (varb/((b)**2)) + 2*covbn/(b*n) ) var4 = 4*( (rho4p**2)*varbn + (sig_rho4**2)*((n*b)**2) ) #var4 = 4*((n*b*rho4p)**2)*(varbn/((b*n)**2) + (sig_rho4/rho4p)**2) varan = varn*(a**2) + vara*(n**2) + 2*covan*(a*n) #varan = ((n*a)**2)*( (varn/((n)**2)) + (vara/((a)**2)) + 2*covan/(a*n) ) var5 = 4*( (rho5p**2)*varan + (sig_rho5**2)*((n*a)**2) ) #var5 = 4*((n*a*rho5p)**2)*(varan/((a*n)**2) + (sig_rho5/rho5p)**2) plt.clf() lfontsize = 7 if (len(samples)==3): pretty_rho(meanr, (a**2)*rho0p, np.sqrt(np.diag(cov_rho0)), legend=r'$\alpha^{2} \rho_{0}$',lfontsize=lfontsize, color='red', ylabel='Correlations', xlim=xlim) pretty_rho(meanr, (b**2)*rho1p, np.sqrt(var1), legend=r'$\beta^{2}\rho_{1}$',lfontsize=lfontsize, color='green', ylabel='Correlations', xlim=xlim) pretty_rho(meanr, (n**2)*rho3p, np.sqrt(var2), legend=r'$\eta^{2}\rho_{3}$', lfontsize=lfontsize, color='black', ylabel='Correlations', xlim=xlim) pretty_rho(meanr, (2*a*b)*rho2p, np.sqrt(var3), legend=r'$2\alpha\beta \rho_{2}$',lfontsize=lfontsize, color='yellow', ylabel='Correlations', xlim=xlim) pretty_rho(meanr, (2*b*n)*rho4p, np.sqrt(var4), legend=r'$2\beta\eta\rho_{4}$',lfontsize=lfontsize, color='blue', ylabel='Correlations', xlim=xlim) pretty_rho(meanr, (2*n*a)*rho5p, np.sqrt(var5), legend=r'$2\eta\alpha\rho_{5}$', lfontsize=lfontsize, color='gray', ylabel='Correlations', xlim=xlim) print('Printing', nameterms) plt.savefig(nameterms, dpi=200) if (len(samples)==2): pretty_rho(meanr, (a**2)*rho0p, np.sqrt(var0), legend=r'$\alpha^{2} \rho_{0}$',lfontsize=lfontsize, color='red', ylabel='Correlations', xlim=xlim) pretty_rho(meanr, (b**2)*rho1p, np.sqrt(var1), legend=r'$\beta^{2}\rho_{1}$',lfontsize=lfontsize, color='green', ylabel='Correlations', xlim=xlim) pretty_rho(meanr, (2*a*b)*rho2p, np.sqrt(var3), legend=r'$2\alpha\beta \rho_{2}$',lfontsize=lfontsize, color='yellow', ylabel='Correlations', xlim=xlim) print('Printing', nameterms) plt.savefig(nameterms, dpi=200) if (len(samples)==1): pretty_rho(meanr, (a**2)*rho0p, np.sqrt(var0), legend=r'$\alpha^{2} \rho_{0}$',lfontsize=lfontsize, color='red', ylabel='Correlations', xlim=xlim) print('Printing', nameterms) plt.savefig(nameterms, dpi=200) #supposing that a,b and n are idependent of rhos(scale independent) dxip = (a**2)*rho0p + (b**2)*rho1p + (n**2)*rho3p + (2*a*b)*rho2p + (2*b*n)*rho4p + (2*n*a)*rho5p f1 = 2*(a*rho0p + b*rho2p + n*rho5p) f2 = 2*(b*rho1p + a*rho2p + n*rho4p) f3 = 2*(n*rho3p + b*rho4p + a*rho5p) f4 = a**2 ; f5 = b**2; f6 = 2*a*b f7 = n**2 ; f8 = 2*b*n; f9 = 2*n*a covmat_dxip = np.diag( (f1**2)*vara + (f2**2)*varb + (f3**2)*varn + + 2*(f1*f2*covab + f1*f3*covan + f2*f3*covbn) ) \ + (f4**2)*(cov_rho0) + (f5**2)*(cov_rho1) + (f6**2)*(cov_rho2) + (f7**2)*(cov_rho3) +(f8**2)*(cov_rho4) + (f9**2)*(cov_rho5) if(plots): plt.clf() pretty_rho(meanr, dxip, np.sqrt(np.diag(covmat_dxip)) , legend=r"$\delta \xi_{+}$", ylabel=r"$\delta \xi_{+}$", xlim=xlim) print('Printing', dxipname) plt.savefig(dxipname, dpi=150) nrows = len(dxip) hdu = fits.PrimaryHDU() hdul = fits.HDUList([hdu]) covmathdu = fits.ImageHDU(covmat_dxip, name='COVMAT') hdul.insert(1, covmathdu) angarray = meanr valuearray = np.array(dxip) bin1array = np.array([ -999]*nrows) bin2array = np.array([ -999]*nrows) angbinarray = np.arange(nrows) array_list = [bin1array, bin2array, angbinarray, valuearray, angarray ] for array, name in zip(array_list, names): outdata[name] = array corrhdu = fits.BinTableHDU(outdata, name=nam) hdul.insert(2, corrhdu) if xim: hdul.writeto(filename + 'm.fits', clobber=True) else: hdul.writeto(filename + 'p.fits', clobber=True)
def main(): import sys args = parse_args() sys.path.insert(0, args.srcpath) from readfits import read_corr from plot_stats import plotallrhosfits, plotallrhoscorrmatfits, plotalltausfits, plotalltauscorrmatfits import numpy as np #Make directory where the ouput data will be outpath = os.path.expanduser(args.outpath) try: if not os.path.exists(outpath): os.makedirs(outpath) except OSError: if not os.path.exists(outpath): raise plotspath = os.path.expanduser(args.plotspath) try: if not os.path.exists(plotspath): os.makedirs(plotspath) except OSError: if not os.path.exists(outpath): raise if (args.plots): xlim = [2., 300.] #Make directory where the ouput data will be plotallrhosfits(args.rhos, outpath=plotspath, xlim=xlim) plotallrhoscorrmatfits(args.rhos, outpath=plotspath) #plotalltausfits(args.taus, outpath=plotspath, xlim=xlim) #plotalltauscorrmatfits(args.taus, outpath=plotspath) rhonames = args.rhos meanr, rho0p, cov_rho0p = read_corr(rhonames[0]); meanr, rho0m, cov_rho0m = read_corr(rhonames[6]) meanr, rho1p, cov_rho1p = read_corr(rhonames[1]); meanr, rho1m, cov_rho1m = read_corr(rhonames[7]) meanr, rho2p, cov_rho2p = read_corr(rhonames[2]); meanr, rho2m, cov_rho2m = read_corr(rhonames[8]) meanr, rho3p, cov_rho3p = read_corr(rhonames[3]); meanr, rho3m, cov_rho3m = read_corr(rhonames[9]) meanr, rho4p, cov_rho4p = read_corr(rhonames[4]); meanr, rho4m, cov_rho4m = read_corr(rhonames[10]) meanr, rho5p, cov_rho5p = read_corr(rhonames[5]); meanr, rho5m, cov_rho5m = read_corr(rhonames[11]) rhosp = [rho0p, rho1p, rho2p, rho3p, rho4p, rho5p] covrhosp = [cov_rho0p, cov_rho1p, cov_rho2p, cov_rho3p, cov_rho4p, cov_rho5p] rhosm = [rho0m, rho1m, rho2m, rho3m, rho4m, rho5m] covrhosm = [cov_rho0m, cov_rho1m, cov_rho2m, cov_rho3m, cov_rho4m, cov_rho5m] taunames = args.tau meanr, tau0p, cov_tau0p = read_corr(taunames[0]); meanr, tau0m, cov_tau0m = read_corr(taunames[3]) meanr, tau2p, cov_tau2p = read_corr(taunames[1]); meanr, tau2m, cov_tau2m = read_corr(taunames[4]) meanr, tau5p, cov_tau5p = read_corr(taunames[2]); meanr, tau5m, cov_tau5m = read_corr(taunames[5]) tausp = [tau0p, tau2p, tau5p] covtausp = [cov_tau0p, cov_tau2p, cov_tau5p] tausm = [tau0m, tau2m, tau5m] covtausm = [cov_tau0m, cov_tau2m, cov_tau5m] data = {} data['rhosp'] = rhosp; data['rhosm'] = rhosm data['covrhosp'] = covrhosp; data['covrhosm'] = covrhosm data['tausp'] = tausp; data['tausm'] = tausm data['covtausp'] = covtausp; data['covtausm'] = covtausm #Finding best alpha beta gamma nwalkers, nsteps = 100, 1000 moderr = False nsig = 1 eq = 'All' i_guess0 = [ -0.01, 1, -1 ] #fiducial values if not (args.abe or args.ab or args.a): args.abe = True ## ALPHA-BETA-ETA if(args.abe): print("### Runing alpha, beta and eta test ### ") gflag, bflag = True, True i_guess = i_guess0 namemc = plotspath + 'mcmc_alpha-beta-eta_eq_' + str(eq) + '_join_.png' namecont = plotspath +'contours_alpha-beta-eta_eq_' + str(eq) + '_join_.png' nameterms = plotspath +'termsdxip_alpha-beta-eta_eq_' + str(eq) + '_join_.png' namecovmat = plotspath +'covmatrix_alpha-beta-eta_eq_' + str(eq) + '_join_.png' namedxip = plotspath +'xobias_abe_' + str(eq) + '_join_.png' filename = outspath +'abe_dxip_join.fits' samples = RUNtest(args, data, nwalkers, nsteps, i_guess, gflag, bflag, eq, moderr, nsig, namemc, namecont) writexipbias(samples, args.rhos, args.plots, args.xim, nameterms, namedxip, namecovmat, filename ) ## ALPHA-BETA if(args.ab): print("### Runing alpha and beta test ### ") gflag, bflag = False, True i_guess = i_guess0[:2] #fiducial values namemc = plotspath + 'mcmc_alpha-beta_eq_' + str(eq) + '_join_.png' namecont = plotspath + 'contours_alpha-beta_eq_' + str(eq) + '_join_.png' nameterms = plotspath + 'termsdxip_alpha-beta_eq_' + str(eq) + '_join_.png' namecovmat = plotspath +'covmatrix_alpha-beta_eq_' + str(eq) + '_join_.png' namedxip = plotspath +'xibias_ab_' + str(eq) + '_join_.png' filename = outspath +'ab_dxip_join.fits' samples = RUNtest(args, data, nwalkers, nsteps, i_guess, gflag, bflag, eq, moderr, nsig, namemc, namecont) writexipbias(samples, args.rhos, args.plots, args.xim, nameterms, namedxip, namecovmat, filename ) ## ALPHA if(args.a): print("### Runing alpha test ### ") gflag, bflag = False, False i_guess = i_guess0[:1] #fiducial values namemc = plotspath +'mcmc_alpha_eq_' + str(eq) + '_join_.png' namecont = plotspath +'contours_alpha_eq_' + str(eq) + '_join_.png' nameterms = plotspath +'termsdxip_alpha_eq_' + str(eq) + '_join_.png' namecovmat = plotspath +'covmatrix_alpha-beta-eta_eq_' + str(eq) + '_join_.png' namedxip = plotspath +'xibias_a_' + str(eq) + '_join_.png' filename = outspath +'a_dxip_join.fits' samples = RUNtest(args, data, nwalkers, nsteps, i_guess, gflag, bflag, eq, moderr, nsig, namemc, namecont) writexipbias(samples, args.rhos, args.plots, nameterms, namedxip, namecovmat, filename )
def main(): import sys args = parse_args() sys.path.insert(0, args.srcpath) from readfits import read_corr from plot_stats import plotallrhosfits, plotallrhoscorrmatfits, plotalltausfits, plotalltauscorrmatfits import numpy as np #Make directory where the ouput data will be outpath = os.path.expanduser(args.outpath) try: if not os.path.exists(outpath): os.makedirs(outpath) except OSError: if not os.path.exists(outpath): raise plotspath = os.path.expanduser(args.plotspath) try: if not os.path.exists(plotspath): os.makedirs(plotspath) except OSError: if not os.path.exists(outpath): raise if (args.xim): args.rhos = \ ['/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/RHO0M.fits', '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/RHO1M.fits', '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/RHO2M.fits', '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/RHO3M.fits', '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/RHO4M.fits', '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/RHO5M.fits'] args.taus = \ ['/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/TAU0M.fits', '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/TAU2M.fits', '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/TAU5M.fits'] if (args.plots): xlim = [2., 300.] ylims = [[1.e-11, 1.e-7], [3.e-8, 3.e-4]] rhostitle = '' plotallrhosfits(args.rhos, outpath=plotspath, title=rhostitle, xlim=xlim, ylims=ylims) plotallrhoscorrmatfits(args.rhos, outpath=plotspath) plotalltausfits(args.taus, outpath=plotspath, xlim=xlim) plotalltauscorrmatfits(args.taus, outpath=plotspath) rhonames = args.rhos meanr, rho0, cov_rho0 = read_corr(rhonames[0], maxscale=args.maxscale) meanr, rho1, cov_rho1 = read_corr(rhonames[1], maxscale=args.maxscale) meanr, rho2, cov_rho2 = read_corr(rhonames[2], maxscale=args.maxscale) meanr, rho3, cov_rho3 = read_corr(rhonames[3], maxscale=args.maxscale) meanr, rho4, cov_rho4 = read_corr(rhonames[4], maxscale=args.maxscale) meanr, rho5, cov_rho5 = read_corr(rhonames[5], maxscale=args.maxscale) rhos = [rho0, rho1, rho2, rho3, rho4, rho5] covrhos = [cov_rho0, cov_rho1, cov_rho2, cov_rho3, cov_rho4, cov_rho5] taunames = args.taus meanr, tau0, cov_tau0 = read_corr(taunames[0], maxscale=args.maxscale) meanr, tau2, cov_tau2 = read_corr(taunames[1], maxscale=args.maxscale) meanr, tau5, cov_tau5 = read_corr(taunames[2], maxscale=args.maxscale) taus = [tau0, tau2, tau5] covtaus = [cov_tau0, cov_tau2, cov_tau5] data = {} data['rhos'] = rhos data['covrhos'] = covrhos data['taus'] = taus data['covtaus'] = covtaus #for i in taus: print i.size #for i in covrhos: print i.shape #Finding best alpha beta gamma nwalkers, nsteps = 100, 1000 moderr = False nsig = 1 eq = 2 #'All' i_guess0 = [-0.01, 1, -1] #fiducial values if not (args.abe or args.ab or args.a): args.abe = True ## ALPHA-BETA-ETA if (args.abe): print("### Runing alpha, beta and eta test ### ") eflag, bflag = True, True i_guess = i_guess0 namemc = plotspath + 'mcmc_alpha-beta-eta_eq_' + str(eq) + '_.png' namecont = plotspath + 'contours_alpha-beta-eta_eq_' + str( eq) + '_.png' nameterms = plotspath + 'termsdxip_alpha-beta-eta_eq_' + str( eq) + '_.png' namecovmat = plotspath + 'covmatrix_alpha-beta-eta_eq_' + str( eq) + '_.png' namedxip = plotspath + 'xobias_abe_' + str(eq) + '_.png' filename = outpath + 'abe_dxi.fits' samples = RUNtest(data, nwalkers, nsteps, i_guess, eflag, bflag, eq, args.uwmprior, moderr, nsig, namemc, namecont) writexipbias(samples, args.rhos, args.plots, args.xim, nameterms, namedxip, namecovmat, filename) ## ALPHA-BETA if (args.ab): print("### Runing alpha and beta test ### ") eflag, bflag = False, True i_guess = i_guess0[:2] #fiducial values namemc = plotspath + 'mcmc_alpha-beta_eq_' + str(eq) + '_.png' namecont = plotspath + 'contours_alpha-beta_eq_' + str(eq) + '_.png' nameterms = plotspath + 'termsdxip_alpha-beta_eq_' + str(eq) + '_.png' namecovmat = plotspath + 'covmatrix_alpha-beta_eq_' + str(eq) + '_.png' namedxip = plotspath + 'xibias_ab_' + str(eq) + '_.png' filename = outpath + 'ab_dxi.fits' samples = RUNtest(data, nwalkers, nsteps, i_guess, eflag, bflag, eq, args.uwmprior, moderr, nsig, namemc, namecont) writexipbias(samples, args.rhos, args.plots, args.xim, nameterms, namedxip, namecovmat, filename) ## ALPHA if (args.a): print("### Runing alpha test ### ") eflag, bflag = False, False i_guess = i_guess0[:1] #fiducial values namemc = plotspath + 'mcmc_alpha_eq_' + str(eq) + '_.png' namecont = plotspath + 'contours_alpha_eq_' + str(eq) + '_.png' nameterms = plotspath + 'termsdxip_alpha_eq_' + str(eq) + '_.png' namecovmat = plotspath + 'covmatrix_alpha-beta-eta_eq_' + str( eq) + '_.png' namedxip = plotspath + 'xibias_a_' + str(eq) + '_.png' filename = outpath + 'a_dxi.fits' samples = RUNtest(data, nwalkers, nsteps, i_guess, eflag, bflag, eq, args.uwmprior, moderr, nsig, namemc, namecont) writexipbias(samples, args.rhos, args.plots, args.xim, nameterms, namedxip, namecovmat, filename)
def main(): import sys args = parse_args() sys.path.insert(0, args.srcpath) from readfits import read_corr from plot_stats import plotallrhosfits, plotallrhoscorrmatfits, plotalltausfits, plotalltauscorrmatfits, plot_samplesdist import numpy as np #Make directory where the ouput data will be outpath = os.path.expanduser(args.outpath) try: if not os.path.exists(outpath): os.makedirs(outpath) except OSError: if not os.path.exists(outpath): raise plotspath = os.path.expanduser(args.plotspath) try: if not os.path.exists(plotspath): os.makedirs(plotspath) except OSError: if not os.path.exists(outpath): raise if(args.xim): args.rhos = \ ['/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/RHO0M.fits', '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/RHO1M.fits', '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/RHO2M.fits', '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/RHO3M.fits', '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/RHO4M.fits', '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/RHO5M.fits'] args.taus = \ ['/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/TAU0M.fits', '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/TAU2M.fits', '/home/dfa/sobreira/alsina/alpha-beta-gamma/code/correlations/TAU5M.fits'] if (args.plots): xlim = [2., 300.] ylims = [[1.e-11,1.e-7 ],[3.e-8 ,3.e-4 ]] rhostitle = '' plotallrhosfits(args.rhos, outpath=plotspath, title=rhostitle, xlim=xlim, ylims=ylims) plotallrhoscorrmatfits(args.rhos, outpath=plotspath) plotalltausfits(args.taus, outpath=plotspath, xlim=xlim) plotalltauscorrmatfits(args.taus, outpath=plotspath) rhonames = args.rhos meanr, rho0, cov_rho0 = read_corr(rhonames[0], maxscale=args.maxscale) meanr, rho1, cov_rho1 = read_corr(rhonames[1], maxscale=args.maxscale) meanr, rho2, cov_rho2 = read_corr(rhonames[2], maxscale=args.maxscale) meanr, rho3, cov_rho3 = read_corr(rhonames[3], maxscale=args.maxscale) meanr, rho4, cov_rho4 = read_corr(rhonames[4], maxscale=args.maxscale) meanr, rho5, cov_rho5 = read_corr(rhonames[5], maxscale=args.maxscale) rhos = [rho0, rho1, rho2, rho3, rho4, rho5] covrhos = [cov_rho0, cov_rho1, cov_rho2, cov_rho3, cov_rho4, cov_rho5] taunames = args.taus meanr, tau0, cov_tau0 = read_corr(taunames[0], maxscale=args.maxscale) meanr, tau2, cov_tau2 = read_corr(taunames[1], maxscale=args.maxscale) meanr, tau5, cov_tau5 = read_corr(taunames[2], maxscale=args.maxscale) taus = [tau0, tau2, tau5] covtaus = [cov_tau0, cov_tau2, cov_tau5] data = {} data['rhos'] = rhos data['covrhos'] = covrhos data['taus'] = taus data['covtaus'] = covtaus #for i in taus: print i.size #for i in covrhos: print i.shape #Finding best alpha beta gamma nwalkers, nsteps = 100, 1000 moderr = False minimize = True nsig = 1 eq = args.eq print("Using equations: ", eq) i_guess0 = [ -0.01, 1, -1 ] #fiducial values if not (args.abe or args.ab or args.a): args.abe = True ## ALPHA-BETA-ETA if(args.abe): print("### Runing alpha, beta and eta test ### ") mflags = [True, True, True] ##alpha,beta,eta namemc = plotspath + 'mcmc_alpha-beta-eta_eq_' + str(eq) + '_.png' namecont = plotspath +'contours_alpha-beta-eta_eq_' + str(eq) + '_.png' nameterms = plotspath +'termsdxip_alpha-beta-eta_eq_' + str(eq) + '_.png' namecovmat = plotspath +'covmatrix_alpha-beta-eta_eq_' + str(eq) + '_.png' namedxip = plotspath +'xibias_abe_' + str(eq) + '_.png' filename = outpath +'abe_dxi.fits' ## ALPHA-BETA if(args.ab): print("### Runing alpha and beta test ### ") mflags = [True, True, False] ##alpha,beta,eta namemc = plotspath + 'mcmc_alpha-beta_eq_' + str(eq) + '_.png' namecont = plotspath + 'contours_alpha-beta_eq_' + str(eq) + '_.png' nameterms = plotspath + 'termsdxip_alpha-beta_eq_' + str(eq) + '_.png' namecovmat = plotspath +'covmatrix_alpha-beta_eq_' + str(eq) + '_.png' namedxip = plotspath +'xibias_ab_' + str(eq) + '_.png' filename = outpath +'ab_dxi.fits' ## ALPHA-ETA if(args.ae): print("### Runing alpha and eta test ### ") mflags = [True, False, True] ##alpha,eta,eta namemc = plotspath + 'mcmc_alpha-eta_eq_' + str(eq) + '_.png' namecont = plotspath + 'contours_alpha-eta_eq_' + str(eq) + '_.png' nameterms = plotspath + 'termsdxip_alpha-eta_eq_' + str(eq) + '_.png' namecovmat = plotspath +'covmatrix_alpha-eta_eq_' + str(eq) + '_.png' namedxip = plotspath +'xibias_ae_' + str(eq) + '_.png' filename = outpath +'ae_dxi.fits' ## BETA-ETA if(args.be): print("### Runing beta and eta test ### ") mflags = [True, False, True] ##beta,eta,eta namemc = plotspath + 'mcmc_beta-eta_eq_' + str(eq) + '_.png' namecont = plotspath + 'contours_beta-eta_eq_' + str(eq) + '_.png' nameterms = plotspath + 'termsdxip_beta-eta_eq_' + str(eq) + '_.png' namecovmat = plotspath +'covmatrix_beta-eta_eq_' + str(eq) + '_.png' namedxip = plotspath +'xibias_be_' + str(eq) + '_.png' filename = outpath +'be_dxi.fits' ## ALPHA if(args.a): print("### Runing alpha test ### ") mflags = [True, False, False] ##alpha,beta,eta namemc = plotspath +'mcmc_alpha_eq_' + str(eq) + '_.png' namecont = plotspath +'contours_alpha_eq_' + str(eq) + '_.png' nameterms = plotspath +'termsdxip_alpha_eq_' + str(eq) + '_.png' namecovmat = plotspath +'covmatrix_alpha_eq_' + str(eq) + '_.png' namedxip = plotspath +'xibias_a_' + str(eq) + '_.png' filename = outpath +'a_dxi.fits' ## Beta if(args.b): print("### Runing beta test ### ") mflags = [False, True, False] ##alpha,beta,eta namemc = plotspath +'mcmc_beta_eq_' + str(eq) + '_.png' namecont = plotspath +'contours_beta_eq_' + str(eq) + '_.png' nameterms = plotspath +'termsdxip_beta_eq_' + str(eq) + '_.png' namecovmat = plotspath +'covmatrix_beta_eq_' + str(eq) + '_.png' namedxip = plotspath +'xibias_b_' + str(eq) + '_.png' filename = outpath +'b_dxi.fits' ## Eta if(args.e): print("### Runing eta test ### ") mflags = [False, False, True] ##alpha,eta,eta namemc = plotspath +'mcmc_eta_eq_' + str(eq) + '_.png' namecont = plotspath +'contours_eta_eq_' + str(eq) + '_.png' nameterms = plotspath +'termsdxip_eta_eq_' + str(eq) + '_.png' namecovmat = plotspath +'covmatrix_eta_eq_' + str(eq) + '_.png' namedxip = plotspath +'xibias_e_' + str(eq) + '_.png' filename = outpath +'e_dxi.fits' i_guess = np.array(i_guess0)[np.array(mflags)].tolist() samples, chains = RUNtest(i_guess, data, nwalkers, nsteps, eq=eq, mflags=mflags, moderr=moderr, uwmprior=args.uwmprior, minimize= minimize) #samples= np.c_[[par[int(0.2 * len(par)):] for par in samples]].T #print("Total samples", [len(i) for i in samples] ) if(args.plots): plot_samplesdist(samples, chains, mflags, nwalkers, nsteps, namemc, namecont ) writexipbias(samples, args.rhos, plots=args.plots, xim=args.xim, nameterms=nameterms, dxiname=namedxip, namecovmat=namecovmat, filename=filename )