def __init__(self, nr_inp, nr_out): self.n_nodes_input = nr_inp self.n_nodes_output = nr_out self.x = tf.placeholder('float', [None, nr_inp]) self.y = tf.placeholder('float', [None, nr_out]) reading_from_file.read_from_file_time_series_norwegian( self.n_nodes_input, self.n_nodes_output) reading_from_file.normalize_time_series() self.batch_size = reading_from_file.get_test_data_size_time_series() self.batch_size = 1000
def test_persistnece_time(): reading_from_file.read_from_file_time_series_norwegian(5, 5) reading_from_file.normalize_time_series() test_output = reading_from_file.get_test_output_time_series() test_input = reading_from_file.get_test_input_time_series() result = persistence_test.persistence_test(test_input, test_output) print("Result:" + str(result)) with open('output_files/raggovidda_persistence_test_time_norwegian.csv', 'w') as csvfile: spamwriter = csv.writer(csvfile, delimiter=';', quotechar='|', quoting=csv.QUOTE_MINIMAL) spamwriter.writerow(result)
def run_svr(): #reading_from_file.read_from_file_time_series(5, 5) reading_from_file.read_from_file_time_series_norwegian(5, 5) reading_from_file.normalize_time_series() test_input = reading_from_file.get_test_input_time_series() test_output = reading_from_file.get_test_output_time_series() train_input = reading_from_file.get_train_input_time_series() train_output = reading_from_file.get_train_output_time_series() result = svr.predict_stuff(train_input, train_output, test_input, test_output) with open('output_files/raggovidda_svr_norwegian.csv', 'w') as csvfile: spamwriter = csv.writer(csvfile, delimiter=';', quotechar='|', quoting=csv.QUOTE_MINIMAL) spamwriter.writerow(result)
def __init__(self, nr_inp, nr_out): self.n_nodes_input = nr_inp self.n_noes_actial_out = nr_out self.n_nodes_output = 1 self.x = tf.placeholder('float', [None, nr_inp]) self.y = tf.placeholder('float', [None, self.n_nodes_output]) reading_from_file.read_from_file_time_series_norwegian( self.n_nodes_input, self.n_noes_actial_out) reading_from_file.normalize_time_series() #self.batch_size = reading_from_file.get_test_data_size_time_series() self.batch_size = 1000 self.train_outputs = reading_from_file.get_train_output_time_series() lenght = (len(self.train_outputs)) self.columns = list(zip(*self.train_outputs)) self.output_values = self.columns[0] self.output_values = np.asarray(self.output_values).reshape(lenght, 1)
def test_knn_time_new(): #reading_from_file.read_from_file_time_series(5, 5) reading_from_file.read_from_file_time_series_norwegian(5, 5) reading_from_file.normalize_time_series() test_input = reading_from_file.get_test_input_time_series() test_output = reading_from_file.get_test_output_time_series() train_input = reading_from_file.get_train_input_time_series() train_output = reading_from_file.get_train_output_time_series() with open('output_files/raggovidda_knn_norwegian.csv', 'w') as csvfile: spamwriter = csv.writer(csvfile, delimiter=';', quotechar='|', quoting=csv.QUOTE_MINIMAL) for k in range(1, 30): result = knn_improved.knn_new(train_input, train_output, test_input, test_output, k) print("Result:" + str(result) + " For K = " + str(k)) spamwriter.writerow(result)
def lstm_keras(nr_input, nr_output): reading_from_file.read_from_file_time_series_norwegian(nr_input, nr_output) reading_from_file.normalize_time_series() train_inp = reading_from_file.get_train_input_time_series() train_out = reading_from_file.get_train_output_time_series() x_train, y_train, x_test, y_test = lstm.load_data( 'test_files/Raggovidda_2.csv', 5, True) #print("X:", x_test) #print("Y:", y_test) print(len(y_test)) print(len(x_test)) train_inp = np.asarray(train_inp) len_inp = len(train_inp) train_inp = train_inp.reshape(len_inp, 5, 1) columns = list(zip(*train_out)) train_out = columns[0] train_out = np.reshape(train_out, len(train_out)) test_inp = reading_from_file.get_test_input_time_series() test_out = reading_from_file.get_test_output_time_series() columns = list(zip(*test_out)) test_out = columns[0] test_out = np.reshape(test_out, len(test_out)) len_inp = len(test_inp) test_inp = test_inp.reshape(len_inp, 5, 1) #test_out = np.asarray(test_out) #test_out = test_out.reshape(len_inp, 5, 1) model = Sequential() model.add(LSTM(input_dim=1, output_dim=5, return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(100, return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(output_dim=1)) model.add(Activation('linear')) start = time.time() model.compile(loss='mse', optimizer='rmsprop') print('compilation time: ', time.time() - start) model.fit(x_train, y_train, batch_size=2000, validation_split=0.05, epochs=5) predictions = lstm.predict_sequences_multiple(model, x_test, 5, 5) pred = np.asarray(predictions) y_val = np.asarray(y_test) y_val = y_val.reshape(len(pred), 5) #print ("Y_val: ",y_val) #print ("Pred: ", pred) print(len(y_val)) print(len(pred)) result = mean_squared_error(pred, y_val, multioutput='raw_values') print(result) return result